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A B S T R A C T  
 
The goal of this work is to simplify and automate the production and re-use of sound. In sound production, 

reusing pre-recorded sounds to create new soundtracks is difficult because these sounds are static and might 

not fit the target context. One option is to find better fitting instances in a sound library. The other is to 

manually rearrange the sounds to the new context. This is time-consuming, even for a skilled sound editor. 

In this work, automated techniques are introduced to remodel pre-recorded sounds whilst maintaining their 

original character. The user is presented with high-level controls over the remodelling process such as “more 

of this sound here and less of that sound there”. Additionally, in the case of computer animation, our system allows 

a user to simply supply a sample animation (along with its soundtrack) and, given a new animation, say, in 

effect: “Make it sound like that”. This is achieved by using data-driven sound re-synthesis methods to generate 

meaningful rearrangements of sounds. 
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1. Chapter 1 

I N T R O D U C T I O N  
 

 
 

 



 

1.1 Background 

There has been a digital revolution in films and video games during the last 20 years. This revolution is the 

shift from analogue to digital methods of recording and manipulating visuals and sound. This section 

examines industrial use of digital sound in production. 

1.1.1 Sound 

Sound is fundamental to our experience of the real world, and so the role of sound in relation to on-screen 

images is vital. Contrary to popular assumptions, both acoustic and visual backgrounds contain a large 

amount of useful and important information. But due to the fact that they are often perceived 

unconsciously, their importance is not always recognized. However, in some cases, the sound that 

accompanies visual images can make or break almost any film: 

Films are 50 percent visual and 50 percent sound. Sometimes sound even overplays the visual.  
David Lynch (Filmmaker) [Home Theater Buyer's Guide 1998] 

Surprisingly, if one includes the cost of music, the sound budget for a typical Hollywood film is traditionally 

only 5% of the total cost of the film [Carlsson 2002]. In video games, sound and music are almost typically 

done last and work with whatever system resources are left over from graphics and game mechanics 

[Maitland 2001]. However, this is changing. Technological improvements in sound hardware and better 

general awareness mean that sound requirements are now becoming part of the initial design of games 

[Boyd 2002]. 

Traditional approaches to soundtrack production have concentrated on pre- or post-processing methods 

[Zaza 1991] with reference to animation and video. In the pre-processing technique, a soundtrack is 

composed early in development, before the animation or video has been finalized. Using timing information 

from the soundtrack, motion events and video are then synchronised to sounds. 

In post-processing methods, sounds are synchronised to existing visual events. The motions of objects in 

the animation or the sequence of frames in video, are determined before any sounds are generated. In film 

and television, the sound synchronisation is often then done manually in a process known as Foleying, 

named after Jack Foley of Universal Studios who created a way to add sound effects during post-production 



 

using a recording studio (Figure 1).  It is conventionally done in a room where the floor is covered with the 

different types of surfaces such as gravel, wood, asphalt and leaves. The picture is then projected and the 

Foley artists try to copy the actions on screen as accurately as possible, while their sounds are recorded. 

Clothing rustle, rain, car hoods, thunder, doors opening, keys rattling and the movement of props such as 

dishes are likely to be recorded here. Even kisses are Foleyed. 

      

Figure 1: A Foley studio. 

Foley does not encompass sounds like explosions, automobile engines, dog barks, or other mechanical 

entities. This is simply for practical reasons, since driving a car around in the studio or blowing up a building 

is usually not possible. These sounds are the domain of digital sound effects which draw on pre-recorded 

libraries. Using sound editing software, these are then layered and mixed into the final sound track.  

A deficiency in this approach is that editing the film forces a regeneration of the soundtrack, which can be 

time-consuming and expensive. Although Foleying and sound effects processing has recently been 

automated, they remain difficult and laborious tasks. Moreover, few audio signal representation methods are 

capable of synthesizing everyday sounds for effects in film, television, video games and virtual 

environments. Our research fits in the post-processing category, with the goal of simplifying the sound 

production process. 

In video games and virtual worlds, the images are constantly changing. Therefore, a common technique is to 

playback pre-recorded sounds when predefined events occur. This quickly becomes monotonous for 

frequent events, where the same sounds are repeated for each occurrence. There has been surprisingly little 

work using the information already present in the animated graphics to drive the generation of sound. It 



 

would be interesting to use that motion data to control the sound generation step to automate the sound 

design process further. 



 

1.2 Motivation and Aims 

Producing content for film, TV, animation, virtual environments or video games is a labour intensive 

process. This research project arises from the current trend in audio processing and computer graphics 

communities to simplify the production of audio and visual content. This work endeavours to automate the 

production of soundtracks and animation whilst maximizing reuse of existing assets to reduce both cost and 

labour, yet maintain quality. There are two goals to this research: 

• Automate the editing of soundtracks 
 

Every sound effect and ambient noise we hear in video or interactive environments, such as video 

games and virtual worlds, is chosen by a sound designer who carefully sorts through hundreds of pre-

recorded sound samples, existing soundtracks or specially recorded sounds. Recorded sounds have fixed 

timing, so they might not fit the target context. Another option is to edit the sound manually to fit. Such 

an operation requires retargeting the sound to the new context while keeping its original character. This 

is time-consuming, even for a skilled sound editor. Our goal is to simplify this process. 

• Automate the editing of sound to animation 
 

Sounds are generally associated with motion events in the real world. When sounds and motions do not 

have the proper correspondence, the resulting confusion can lessen the effects of both. Hence, 

producing effective animations and films requires synchronisation of the sound and motion, which 

remains an essential, yet difficult, task.  

In our other work [Cardle et al. 2002a; Cardle et al. 2002b], we dealt with the problem of using sound to 

drive alterations to animations to better convey their synchronicity. This was done by locally modifying 

animations using perceptual cues extracted from the soundtrack. Here, we address the inverse problem: that 

of modifying sound to fit an animation. The goal is to improve synchronicity in an automated manner whilst 

maximizing reuse of existing sounds. The general idea is to use the information present in the animation so 

that recurring events will trigger the same sounds. 



 

It is hard to describe audio and animation verbally or with static graphics, and many of our results should be 

heard or seen in order to be appreciated. Therefore, we have made several audio and video examples 

available on the accompanying DVD-ROM. 

 

 



 

2. Chapter 2 

B A C K G R O U N D  
 

 
This chapter provides background information on sound. A survey of the literature regarding sound 

production for computer animation and related fields is presented. Since the scope of this work spans across 

a set of comprehensive research fields, the discussion is limited to papers directly related to the present 

goals. 



 

2.1 Previous Work in Sound Editing 

There are several existing methods for automating the task of soundtrack generation for computer 

animation, video, video-games and virtual reality (VR). The most relevant ones are reviewed and their 

inadequacies to satisfy our goals are revealed. 

2.1.1 Related Approaches 

2.1.1.1  Non-linear Sound Editing Tools 

In current film and television productions, non-linear sound editing software is used to build up multi-track 

recordings containing dialogue, music, Foley effects and sound effects. They offer a wide variety of 

recording, editing, visualisation and filtering operations. For example, ADR Studio Montage is a professional 

plug-in for speech and Foley for the sound editing software Pro Tools (Figure 2). It was used extensively in 

big-budget movies, including Star Wars Episodes I and II, The Matrix, The Lord of the Rings and many television 

shows. 

        

Figure 2: (Left) Pro Tools’ comprehensive multi-track editing and filtering user-interface. (Right) ADR Studio Montage plug-in for 
Pro Tools. 

A regular source of sound effects is a stock library, where digitally sampled waveforms, commonly referred 

to as sampled sounds, are stored on individual CDs or in complete sets with a common theme. The studio’s 



 

sound editor then picks a selection of sounds and, using conventional sound editing software, combines 

them to fit the target video or animation. If the sound effects do not fit exactly, they must either be re-

arranged or recorded. Though this might be straightforward for very short segments, a more automatic 

approach would be more appropriate for longer segments. Re-arranging a whole soundtrack so as to 

produce constantly varying versions of the original quickly becomes cumbersome in Pro Tools. Also, any 

changes to the visuals force re-editing of the soundtrack. Note that the conventional approach is feasible, as 

many film production houses use it, though admittedly at a high cost of time and labour. In VR and video-

games, this is not feasible due to the constraints of real-time and the necessity of long streams of audio. 

      
Figure 3: 3D modeller’s sound editors. (Left) SoundTrax’s plug-in interface is highly integrated into that of 3D Studio Max. 
(Right) External sample editing dialog of the Foley Studio plug-in in 3D Studio Max. 

2.1.1.2  Sound Editors for 3D Modelling and Animation Packages 

Standard 3D modelling and animation packages like 3D Studio Max and Maya typically offer limited support 

for sound. Tools, such as the SoundTrax and the Foley Studio plug-ins (Figure 3), exist to help 3D animators 

automate the soundtrack creation process. They do this by making use of data available in the 3D 

environment and objects populating it. Pre-recorded sounds are attached to objects or particle systems and 

triggered such as when object collisions are detected (Figure 4). Position, movement and environment data 

is used to add filtering effects such as 3D positioning, Doppler-shift, distance fades, directional sound 

sources and echo. Acoustic materials applied to objects can affect the sonic effect of occlusions and 

collisions. When the animation is changed, the sound events are automatically re-timed and re-filtered. 

Triggered and looped sounds can be randomized to provide more natural, less repetitive sounds. 

Unfortunately, the animator has to hand pick the group of static candidate samples and no audio continuity 

is possible.  



 

 
Figure 4: Foley Studio Output. A triggered pre-recorded stepping sound is attached to each leg of the avatar. The impact force 
between the foot and the floor affects the volume of the triggered sound. The animated walk sequence, shown above, generates 
the synchronized walking sound plotted below. 

These plug-ins, as well as current research efforts in sound for VR [Funkhouser et al., 2002], have focused 

primarily on techniques for localizing sounds. While this is an important problem, it is certainly not the 

whole picture. They do not address the problem of automatically generating continuously varying variations 

on a pre-recorded sample, which still bear a strong resemblance to the original, whilst synchronising to 

animation data. 

2.1.1.3  Video-game and Virtual Reality Sound 

Like film and television, game audio contains music, speech and sound effects. But games and VR also 

require interactivity and real-time effects applied to the audio. Most current sound generation systems for 

games limit their representation of sound sources to sampled sounds. Sampled sounds are computationally 

inexpensive to play, and in many cases can produce good results with little effort. Synthetic sounds (see 

below in Section 2.1.1.4 ), on the other hand, are still computationally expensive to generate and difficult to 

specify. Game companies therefore often rely on commercial stock CD sound effects libraries for the 

majority of their raw sound material [Peck 2001]. These sounds can be affected by the structures in the 

environment such as reverberation or occlusion, or spatially localized, and they can respond to physics (such 

as Doppler shift). Video games can use the same sample ad infinitum during game play. Simple repetition is 

not effective for long.  In the same manner as in 3D modellers, permutations and the randomisation of the 

sampled sounds are hand-defined so that players do not feel like they are hearing the same repeated sounds.  



 

             

Figure 5: Video-game sound. (Left) Blood Wake video-game screenshot where randomized chain gun sounds are used. (Right) 
The Orc army sounds from the Lord of the Rings: The Two Towers video-game also use randomisation to add variety. 

For example, Microsoft’s Blood Wake game contains player and enemy chain-gun sounds (see Figure 5(left)). 

The sound designer therefore created two groups of shot sounds with eight variations within each group. 

The audio programmer then wrote a system that would call these sounds in a quasi-random order. It was 

random, but was weighted to be less likely to call the same sound twice in a row. A similar approach was 

used to generate the Orc army sounds in the Electronic Arts’ recent release of Lord of the Rings: The Two 

Towers video-game [Boyd 2002] (see Figure 5(right)) and in Microsoft’s Xbox Halo game for the laser-gun 

sounds [O’Donnell 2002] (Figure 6). When what is desired is simply a controlled variation on the original 

sample that still bears a strong resemblance to the original, the above audio techniques have critical 

problems. They require extensive manual intervention along with custom programming. 

        

Figure 6: (Left) Custom sound configuration software developed by Microsoft’s development team for their Halo game. This 
interface helps set the randomisation and permutations of each utilized sound. (Right) Halo game-play screenshot. 

 



 

2.1.1.4  Parameterizable sound constructs 

Instead of using triggered sounds, Hahn and Hesham [1995] tie motion parameters to parameterizable 

sound constructs, known as Timbre-trees (see Figure 7). At the core of the technique is the idea of a 

Timbre-tree that represents a sound as a tree composed of functional units. These include standard 

mathematical (+,-,*,/) and signal processing functions (e.g. filtering and convolution) as well as several 

special-purpose functions useful for sound synthesis, such as a number of elementary waveforms (saw-

tooth, triangle, square, sine), sub-trees and several types of noise (white and Perlin noise [Perlin 1985]). The 

output from the root of the tree is the computed value of the sound for that time sample point. By 

evaluating a tree with a time dependent set of parameters, the characteristics of the sound can be changed 

on-the-fly.  The parameters associated with the tree are mapped to parameters of the motion such as 

velocity, direction or angular velocity.   

                        
Figure 7: Timbre-trees. (Left) Timbre-tree for a police siren sound. As the current time parameter t varies, so does the siren 
sound. (Right) The motion of Pixar’s famous Luxo lamp produces a raspy sound due to its squeaky hinges that varies in pitch 
and amplitude with angular velocity. Therefore, a sawtooth wave is modulated in frequency and amplitude by the angular velocity. 
Depending on if the angular motion is clockwise or anti-clockwise, different sounds are heard since the joints have different 
sounds when opening and closing. 

The problem lies in the creation of such parameterized sound structures, and in mapping from the 

parameter space of the motion domain to that of the sound space. The animator must derive the Timbre-

tree of a sound from a general idea of how the sound was produced and then somehow tie its parameter set 

to the motion. For this reason Timbre-trees are developed by deriving a heuristic from a rough notion of 

how the sound is actually produced by a real physical system. These heuristics are then used to help find an 

appropriate parameterisation for the sounds so that they can be mapped to the motion events. Not 

surprisingly, creating Timbre-trees for arbitrary sounds is a difficult process that requires repeated trial-and-

error cycles from an experienced and creative sound designer. Even with evolutionary algorithms to explore 



 

the vast space of possible sounds [Hahn et al. 1996], Timbre-trees are difficult to use especially as some 

sound events do not have an obvious direct physical correspondence. Furthermore, there is no support for 

re-use of pre-recorded soundtracks with Timbre-trees and describing complex natural sounds such as traffic 

sounds or a restaurant ambience remains an open problem.   

2.1.1.5  Physically-based approaches 

More physically-based approaches to motion-driven sound events enable real-time realistic synthesis of 

interaction sounds such as collision sounds and continuous contact sounds [Takala and Hahn, 1992; van 

den Doel and Pai, 1996; O'Brien et al., 2001; van den Doel, 2001; O'Brien et al., 2002]. These methods are 

physically-based since the synthesis algorithms are designed by modelling the physical mechanisms that 

underlie sound production. If an object is struck, the energy of impact causes deformations to propagate 

through the body, causing its outer surfaces to vibrate and emit sound waves. By analyzing the surface 

motions of animated objects, the acoustic pressure waves in the surrounding medium are derived.  For 

example, the sound produced by a struck object can vary with the impact velocity and location (Figure 8). 

By analogy, the physically-based modelling approach has also been adopted in computer graphics, for 

modelling radiosity and light propagation. Physically-based models for audio and graphics can be easily 

synchronized, at least in principle. This allows a high degree of perceptual coherence of acoustic and visual 

events. 

                  
 

Figure 8: Physically-based sound synthesis. (Left) The motion of several bunnies falling through a chute produces 
synchronised impact sounds for both the bunnies and the shelves [O'Brien et al. 2002]. (Right) A square plate being struck (a) on 
the centre and (b) off centre generates corresponding realistic sounds [O'Brien et al. 2001].  



 

The problem with physically-based approaches is that sounds are synthesized from scratch, so they do not 

exploit the multitude of existing pre-recorded sound libraries. Also, they require physical models of sound 

or motion to identify the underlying generative process for a given sound. This is feasible for 

straightforward collision sounds but becomes non-trivial for more complex sounds where the relationship 

between the animation and the soundtrack is less clearly defined. 

2.1.1.6  Temporal Matching 

Another way of re-using soundtracks in animation and video was examined by Tadamura and Nakamae 

[1998]. Instead of using sound synthesis, they use temporal matching between different media to 

synchronize each medium’s start and end time with that of the others. The length of audio and MIDI 

soundtracks are changed interactively by the user throughout the sequence. A screenshot of their prototype 

interface is shown in Figure 9. In the case of audio (such as narrations), they remove silent and nearly silent 

(or quasi-silent) portions as necessary to fit the user constraints. For MIDI background music, adaptive 

tempo alterations are used. The advantage is that soundtracks can be re-used on different animations and 

videos without noticeable deterioration. The disadvantage is that the extent to which a soundtrack can be re-

synchronised is limited. This method is well suited to relatively small timing alterations and does not support 

re-ordering; although standard commercial audio packages can be used for this.  

 

 
 
Figure 9: Interface for Tadamura and Nakamae’s [1998] system. (Left) Before the adjustment process and (Right) after the 
adjustment process. The end of the MIDI (bottom) and the end of audio narration (top) are adjusted to fit the user constraint. 

 
 
 
 
 



 

 

2.1.1.7  Texture Synthesis-by-example 

                                    
Figure 10: Texture Synthesis. Only a small input image (left) is necessary to synthesize a larger version (right). 

The goals of 2D texture synthesis-by-example are similar to what we are trying to accomplish over sound as 

outlined in our initial goals. The emphasis is on re-use of existing textures to form new textures to fit 

another context. Therefore, the sound synthesis methods presented in this report are conceptually and 

algorithmically similar to those used in the active field of 2D texture synthesis-by-example. A texture 

synthesis method starts from an example image and attempts to produce an arbitrarily sized texture with a 

visual appearance similar to the example. Recent texture synthesis algorithms share a common theme of 

local neighbourhood-based statistical approaches. They are based on the assumption that textures can be 

formalized as a stationary stochastic source modelled by conditional probabilistic distributions. The source 

is considered stationary so that the statistics it exhibits in a region are invariant to the region’s location. A 

texture sample is a sample from this stochastic source. Simple non-parametric sampling methods, such as in 

Efros and Leung [1999] and Ashikhmin [2001], can be used to estimate the distribution describing this 

stochastic source. The conditional distribution of a pixel, given all its spatial neighbours synthesized so far, 

is estimated by querying the sample image and finding all similar neighbourhoods. Generating new random 

samples is therefore referred to as sampling the model. In the classic Efros and Leung [1999] method, this is 

done by generating the output image pixel-by-pixel in scan-line order, choosing at each step a pixel from the 

example image whose neighbourhood is most similar with respect to the Euclidean norm to the currently 

available neighbourhood in the texture being synthesized. The algorithm must therefore compare the 

current neighbourhood to that of all pixels in the example image. Figure 11 depicts a step in the process to 

synthesize the output image in Figure 10.  

 



 

 
Figure 11: The Efros and Leung [1999] texture synthesis process. New pixel values (in red) in the synthesized image are 
generated in scan-line order by selecting the candidate pixel with the most similar L-shaped neighbourhood to that of the pixel 
being synthesized. 

Following the Efros and Leung [1999] method, control over the image texture synthesis algorithm was 

introduced in [Ashikhmin 2001, Hertzmann et al. 2001]. By allowing the user to manually specify an input 

and output mask, the synthesis algorithm knows where the texture has to come from and where the texture 

needs to be synthesized to. This is a form of directed texture synthesis, called Texture-by-Numbers, which 

allows the user to re-arrange an image to conform to a paint-by-numbers sketch. The basic idea behind 

these approaches is that the synthesis algorithm now requires that each pixel satisfy the desired output map 

as well as satisfying the texture synthesis requirements. This is done by including the neighbourhoods inside 

the user maps in the final calculation of the pixel neighbourhood similarity measure described above. In 

Figure 12, the blue area delineates the unwooded areas in the input image. The synthesis algorithm then uses 

the output map to determine where these unwooded areas must be generated in the output image. Having 

the same type of control over sounds would greatly simplify the production of a soundtrack.  



 

 

Figure 12. Texture-by-Numbers [Hertzmann et al. 2001].  The input image is spatially re-ordered following the user maps. Note 
that the choice of the colours in the user map is arbitrary as long as they are consistent. 

Another relevant texture synthesis technique is texture transfer where an image is texturized with some arbitrary 

texture [Ashikhmin 2001, Efros and Freeman 2001, Hertzmann et al. 2001].  A controlling image and an 

input texture are provided by the user. The controlling image is then reconstructed using elements of the 

input texture. In Texture-by-Numbers, the controlling image corresponds to the output map which 

determines pixel region memberships. Here, the controlling image determines a spatial map where a certain 

quantity must be satisfied such as image intensity, blurred image intensity or local image orientation angles. 

Texture transfer synthesizes images drawn from the statistical distribution of neighbourhoods in the input 

texture while trying to match the quantities in the controlling image as closely as possible. Figure 13 shows 

an example where luminance of the face image is used to constrain the synthesis of the rice texture. The face 

appears to be rendered in rice. This is because bright areas of the face and bright patches of rice are defined 

to have low correspondence error and therefore are matched up during synthesis. The ability to apply 

similar methods to sounds would enable a soundtrack to be rebuilt from any given sound texture [Saint-

Arnaud and Popat 1997], where the controlling soundtrack would determine the temporal map where a 

certain quantity such as volume or pitch must be satisfied. A large class of natural and artificial sounds such 

as rain, waterfall, traffic noises, people chatting, machine noises, etc., can be regarded as sound textures. 



 

 
Figure 13: Texture Transfer. The face image (bottom-left) is rebuilt using elements of the rice texture (top-left) resulting in a face 
made of rice (right).  

2.1.1.8  Sound Synthesis-by-example  

Having observed that the goals of constrained texture synthesis are the same as ours on sound, we look at 

existing work that applies conceptually similar algorithms to texture synthesis on sound. This is referred to 

as sound synthesis-by-example and can be thought of as a temporal extension of 2D image texture synthesis 

(Figure 14). The difference here is that instead of focussing on spatial coherence as in texture synthesis, 

focus is on temporal coherence in sound synthesis. The ordering of events in sound is fundamental since we 

perceive a sound as a sequence from the first sound to the last. On the other hand, an image is experienced 

as a whole since we (rarely) look at it in a scan-line order. The x and y dimensions of an image can be treated 

in the same manner with image synthesis whereas in sound, the temporal and spatial dimensions should be 

analysed differently. 

The first sound synthesis-by-example method was introduced by Bar-Joseph et al. [1999; Dubnov et al. 

2002]. They use the concept of granular synthesis  where complex sounds are created by combining thousands 

of brief acoustical events [Roads 1988]. Analysis and synthesis of sounds is carried out using a wavelet-based 

time-frequency representation. Their method generates a new sound by synthesizing a new multi-resolution 

wavelet-tree level-by-level from the root down. New wavelet coefficients of the synthesized tree are ranked 

by comparing their neighbourhood to that of the coefficient’s ancestors (up one tree level) and temporal 

predecessors (previous coefficient on same level) in the original sound-texture’s tree. The winning 

coefficient is then uniformly picked from the set of candidate coefficients that are within a user threshold.  

This can be seen as a multi-resolution extension of the image synthesis method proposed by Efros and 

Leung [1999] where the synthesis not only takes place in scan-line fashion but also on a level-by-level basis. 

Another difference is that local neighbourhoods are augmented to include the corresponding 

neighbourhoods of ancestors from previously synthesized upper levels. More details are given in Section 3.3. 



 

While the Bar-Joseph et al. (BJ) algorithm works on both stochastic and periodic sound textures, it does not 

provide control over the new instances of the sound texture it generates. It is perfectly suitable for cases 

when the BJ algorithm is simply used to generate longer variations of a short sample sound. No control is 

possible over how the sample sound is re-arranged to form the new sound. It simply has to generate a new 

instance of a sound that appears to be from the same source as a given sample sound. A useful extension to 

this work would be to control the nature of the temporal re-arrangement in the new sound while it still 

appears to come from the same source. This would be essential for synchronisation purposes where we 

want certain sounds in the sample to appear at specific locations in time.  

        
 

Figure 14: Sound synthesis-by-example. A new variation (right) on the original sound source (left) is generated while still bearing 
a strong resemblance to the original. 

Other approaches to sound texture generation are presented by Hoskinson and Pai [2001] and Lu et al. 

[2002]. They operate in a similar fashion to Bar-Joseph et al. [1999], by first analyzing and segmenting the 

input into variable-sized chunks, or grains, that are recombined into a continuous stream, where each chunk 

is statistically dependent on its predecessor (details in Section 3.4). Again, no control is possible over new 

instances of a sound texture except that they appear to be from the same source as a given sample sound. 

Adding user control to the synthesis process would extend the basic concept of a sound texture to further 

increase its applicability. 

2.1.1.9  Musical Synthesis 

A great deal of further work on sound modelling outside the field of computer graphics has been 

undertaken. Digital sound and music have considered modelling the sounds generated by musical 

instruments accurately, or even creating totally new sounds [Roads 1996; Cook 2002]. Classic techniques like 

additive synthesis, subtractive synthesis, frequency modulation, formant synthesis, linear predictive coding 

or physical modelling methods are aimed at either musical or speech synthesis, their suitability for the 

synthesis of ambient sounds has not been thoroughly investigated. Since the nature of musical tones is 

fundamentally different from those of real-world sounds, and particularly of ambient and natural sounds, 

those synthesis methods which are mainly targeted towards the generation of harmonic spectra are not 



 

typically applicable. More fundamentally, the goal of this research is not to create completely new sounds or 

to modify the spectral content of existing sounds, but to re-order them in time to fit high-level user 

constraints whilst preserving the original spectral content. 

2.1.2 Conclusion 

Like the present work, many of the above systems have investigated the partial automation of sound 

production. However, as stated in our initial goals, we aim to facilitate the editing of soundtracks by using 

the extensive libraries of pre-recorded samples and animation data. Non-linear editing tools effectively draw 

on such sound libraries but require considerable manual intervention. Triggered sounds, such as those used 

in video-games, can be repetitive and ultimately suffer from the latter problem, but have the advantage that 

they can be driven by animation. Paramaterizable sound constructs, such as Timbre-Tree and physically-

based approaches, can produce perfectly synchronized and realistic soundtracks for animation with little 

user intervention. However, they support a limited sound class and do not allow for re-use of existing 

sounds. Since our aims for sound production are more similar to recent innovations in texture synthesis, we 

discussed a subset of these methods that possess algorithmic and conceptual similarities to the present work. 

Texture synthesis inspired recent work on sound synthesis-by-example which is the basis of our own 

approach.     

 



 

3. Chapter 3 

S O U N D  E D I T I N G  
 

Sound is traditionally divided into three elements: dialogue, music and effects. In this chapter, we primarily 

focus on sound effects; that is any auditory information that is not speech or music. Most current video, 

video-games, virtual reality (VR) and animation productions use pre-digitized sound effects rather than 

synthesized sounds. Pre-digitized sounds are static and are difficult to change in response to user 

preferences or actions. Furthermore, obtaining a pre-digitized, application specific sound sequence is 

difficult and often requires sophisticated sound editing hardware and software [Miner, 1994]. Creating an 

acoustically rich soundtrack requires thousands of sounds and variations of those sounds.  Obtaining these 

very large digitized sound libraries is expensive and impractical. The alternative to using pre-digitized sound 

is to use sound synthesis. The approach described here is a step towards providing a flexible sound synthesis 

tool for video, animation, video-games and VR. The goal is to simplify the production of soundtracks in 

computer animation and video by re-targeting existing soundtracks. A segment of source audio is used to 

train a statistical model which is then used to generate variants of the original audio to fit particular 

constraints. These constraints can either be specified explicitly by the user in the form of large-scale 

properties of the sound texture, or determined automatically and semi-automatically by matching similar 

motion events in a source animation to those in the target animation. The algorithm automatically generates 

soundtracks for input animations based on other animations’ soundtracks. Additionally, audio-driven 

synthesis (also referred to as sound transfer) is supported by matching certain audio properties of the 

generated sound texture to that of another soundtrack.  

Three different controllable sound synthesis models were considered:  

• A wavelet-based approach 

• A natural grain-based approach 

• A self-similarity-based approach 

In all cases, the source audio is analyzed and segmented into smaller chunks, such as grains or wavelet 

coefficients, which are then recombined to generate statistically similar variations of the original audio. 



 

Control is obtained by specifying where preferred grains from the source audio should be favoured during 

the synthesis, or by defining the preferred audio properties (e.g. pitch and volume) at each instant in the new 

soundtrack.  



 

3.1 Aims 

Human perception of scenes in the real world is assisted by sound as well as vision, so effective animations 

require the correct association of sound and motion. Currently, animators are faced with the daunting task 

of finding, recording or generating appropriate sound effects and ambiences, and then fastidiously arranging 

them to fit the animation, or changing the animation to fit the soundtrack. We aim to provide more natural 

means of specifying soundtracks specifically for computer animation with applicability to video, video-

games and VR where the reuse of existing soundtracks is maximized. Rather than creating a soundtrack 

from scratch, broad user specifications such as “more of this sound and less of that sound” or “rebuild this soundtrack 

with these new sounds” should be possible.  Alternatively, in the case of computer animation, a user should 

simply supply a sample animation (along with its soundtrack) and, given a new animation, say, in effect: 

“Make it sound like that”. Another option would be to allow a user to simply supply a driving soundtrack, a 

new target sound, and say in effect: “Make it sound like this whilst syncing with that”. For example, a laughing 

audience's recording could be automatically replaced by a synchronized booing soundtrack. All these methods 

would significantly simplify existing soundtrack recycling since no editing, looping, re-mixing or sound 

source separation would be necessary. 

The target soundtrack type is not dialogue or music since maintaining the long-term order of occurrence is 

essential in these cases. This includes both synchronous sounds (matched to an on-screen source) and 

asynchronous sounds (no on-screen source visible), but the primary focus is on sound effects, Foley effects 

and ambient sounds. Ambience is the background recording of a particular place that identifies it aurally. 

While mostly in the background, these sounds are vital for the creation of mood and realism. Examples 

include cave, factory and swamp ambiences.  

 



 

3.2 Overview 

We present three approaches for simple and quick soundtrack creation that generates new, controlled 

variations on the original sound source, which still bear a strong resemblance to the original, using 

controlled stochastic algorithms. Additionally, motion information available in computer animation, such as 

motion curves, is used to constrain the sound synthesis process. Our system supports many types of 

soundtracks, ranging from discrete sound effects to certain music types and sound ambiences used to 

emphasize moods or emotions. 

In the simplest case, the user manually indicates large-scale properties of the new sound to fit an arbitrary 

animation or video. This is done by manually specifying which types of sounds in the original audio are to 

appear at particular locations in the new soundtrack. A controllable statistical model is extracted from the 

original soundtrack and a new sound instance is generated that best fits the user constraints. The 

information in the animation's motion curves is used to facilitate the process. The user selects a sound 

segment that is to be associated with a motion event. Doing this for a single example enables all subsequent 

similar motion events to trigger the chosen sound(s), whilst seamlessly preserving the nature of the original 

soundtrack. For example, the animator might want to apply the sound of one car skidding to several cars 

being animated in a race without having to separate it from other background racing sounds. This is referred 

to as Sound-by-Numbers since it operates in a similar fashion to Paint-by-Numbers kits for children. But 

instead of solid colours, or textures in Texture-by-Numbers [Hertzman et al. 2001], sound is automatically 

synthesized into the corresponding mapping. 

We extend this method to automatically synthesize sounds for input animations. The user need provide only 

a source animation and its associated soundtrack. Given a different target animation of the same nature, we 

find the closest matches in the source motion to the target motion, and assign the matches' associated sound 

events as constraints to the synthesis of the target animation's new soundtrack. 

Finally, in two of our models, we make it possible to use audio to constrain the synthesis process. The goal 

here is to produce a new sound texture that exhibits some similar property (such as volume or pitch) to that 

of a separate guiding soundtrack. The user only has to specify the audio matching feature to use. An 

advantage of this method is that it provides a novel, yet very natural means of specifying soundtracks.  



 

3.3  Wavelet-based Sound Synthesis 

This sections deals with our first controllable synthesis model. It utilizes wavelet-tree learning as the basis 

for its analysis and synthesis of sound. Three interaction methods for defining a new sound are also 

presented, each with increasing automation. We present an algorithm which extends the granular audio 

synthesis method developed by Bar-Joseph et al. [1999] (abbreviated as BJ below) by adding control to the 

synthesized sounds, a description of which is given in Section 3.3.1.  In section 3.3.2 and 3.3.3, we present 

our user-guided approach and detail three types of intuitive user-control. 

3.3.1 Sound Synthesis by Wavelet Tree Sampling 

The sound synthesis method proposed by Bar-Joseph et al. [1999] is a variant of granular synthesis which 

operates on a time-frequency representation of the audio to generate new sound textures. The outputs are 

synthesized sounds of arbitrary length that appear to have been produced from the same underlying 

stochastic process as the finite input sound. In order to construct a new sound, a wavelet hierarchy is 

constructed from the input sound. The goal here is to produce a new sound hierarchy from the original 

which has structural changes at the macro level yet maintains the intermediate and micro-level structures 

which characterize the input sound. 

The synthesis process is performed in two stages. First, the input sound is separated into a wavelet 

coefficient tree. This produces interdependent multi-resolution grains ranging from large scale properties of 

the audio to near sample level details. A new sound texture is then generated by recombining these grains 

using non-parametric sampling. The generated wavelet coefficient tree is made statistically similar to that of 

the input’s sounds. The inverse wavelet transform of the new tree produces the new soundtrack. The 

following section explains the various steps necessary to synthesize a new sound texture, as depicted in 

Figure 15. The wavelet analysis of audio signals is introduced including how the wavelet coefficient tree is 

obtained. Section 3.3.1.3  details the phases of the BJ algorithm and its shortcomings when more controlled 

output is desired. 

 



 

 
 

Figure 15: Overview of unconstrained sound texture generation steps. The wavelet-tree representation of the input audio is 
first obtained. By recombining the wavelet coefficients, a statistically similar variant of the original audio’s wavelet tree is 
generated. The inverse wavelet-transform is then performed on it to produce a new sound texture. 

 

3.3.1.1  Wavelet Transform 

The Wavelet Transform, or multi-resolution analysis (MRA), is a relatively recent and computationally 

efficient technique for extracting information about signals such as audio. Wavelets have the ability to 

analyse different parts of a signal at different scales by breaking up a signal into shifted and scaled versions 

of the original (or mother) wavelet. A wavelet is a waveform that has an average value of zero over its finite 

interval domain.  The continuous wavelet transform (CWT) is defined as the sum over all time of the signal 

multiplied by scaled, shifted versions of the wavelet function Ψ: 
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where: 

a is a scale 
b is the position 
s is the input signal 
Ψ is the wavelet function 
C are the wavelet coefficients 

 
From an intuitive point of view, the wavelet decomposition consists of calculating a resemblance index 

between the input signal and the wavelet located at position b and of scale a. If the index is large, the 

resemblance is strong, otherwise it is slight. The indexes C(a,b) are called coefficients. The scale, which 

simply means stretching (or compressing) the wavelet, is approximately related to frequency by the 

following relationship: 
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where: 

a is a scale 
P is the sampling period 
Fc is the centre frequency of a wavelet in Hz 
Fa is the approximated frequency corresponding to the scale a, in Hz 

The CWT results in a set of wavelet coefficients C, which are a function of scale and position. By 

multiplying each coefficient by the appropriately scaled and shifted wavelet, we get the constituent wavelets 

of the original signal. 

Signals with fast oscillations or even discontinuities in localized regions may be well-approximated by a 

linear combination of relatively few wavelets. Wavelets were developed as an alternative to the short time 

Fourier Transform (STFT) to overcome problems related to its frequency and time resolution due to its 

fixed analysis window size.  STFT provides uniform time resolution for all frequencies. On the other hand, 

the Wavelet Transform (WT) provides high time resolution and low frequency resolution for high 

frequencies, and high frequency resolution and low time resolution for low frequencies (see Figure 16). 

This approach makes sense especially when the signal at hand, such as audio, has high frequency 

components for short duration and low frequency components for long duration. In that respect, it is closer 

to the human ear which exhibits similar time-frequency resolution characteristics [Wang and Shamma, 

1994].  

 
Figure 16: Wavelet analysis allows the use of long time intervals where we want more precise low-frequency information, and 
shorter regions where we want high-frequency information. 

3.3.1.2  Discrete Wavelet Transform 

CWT is computationally expensive since wavelet coefficients have to be calculated at every possible scale 

and position. The Discrete Wavelet Transform (DWT) analysis requires only the values of the transform at 

power of two (or dyadic) scales and positions to obtain the same accuracy (Figure 17). 



 

 

 
 

Figure 17: Discrete Wavelet Transform. Wavelet coefficients calculated for an audio sample. 

The input signal is analyzed in different frequency bands with different resolution by decomposing the 

signal into a coarse approximation and detailed information. The coarse approximation is then further 

decomposed using the same wavelet decomposition step. This is achieved by successive high-pass and low-

pass filtering of the time domain signal and is defined by the following equations: 
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where: 
x is the input signal 
h is a high-pass filter 
l is a low-pass filter 
yhigh is the high-frequency detail of x  
ylow is the low-frequency approximation of x 

 
 

Note that at each step ylow and yhigh are down-sampled by 2 so that we get as many data points before and 

after the filtering operation.  The nature of the complementary decomposition filters h and l is determined 

by the shape of the utilized wavelet. This decomposition process consists of log2N stages at most, given a 

signal x of length N.  The process is depicted in Figure 18. This results in the wavelet-decomposition or 

Mallat tree (Figure 19). For our purposes, the coefficients corresponding to every decomposition level (in 

blue in Figure 18) in the Mallat tree are re-organized into a fully-balanced binary tree (Figure 19). If there is a 

complete decomposition of depth m, the lower layer of the binary tree has 2m nodes, each N/2m samples 



 

long, where N is the number of samples in the original audio. This binary tree forms the input to the sound 

synthesis algorithm. 

 

 
 
 

Figure 18: The Discrete Wavelet Transform decomposition process. The levels in blue correspond to the wavelet-coefficient 
tree levels used in the sound synthesis.  The coarse representation of the original signal on level 1 requires fewer coefficients than 
the detail coefficients of level 2 as depicted by the corresponding size of the lower rectangles. 

 

 
 
Figure 19: The Wavelet Transform tree (left) is reorganized into a fully-balanced binary Wavelet Transform Mallat tree (right). The 
top level of the binary tree (left) corresponds to the average value of the whole tree. The precision of the wavelet coefficients 
increases further down the tree. 

3.3.1.3  The Algorithm 

To generate new sound textures, the BJ algorithm treats the input sound as a sample of a stochastic process. 

The algorithm first builds a binary tree representing a hierarchical wavelet transform of the input sound, and 

then learns and samples the conditional probabilities of the paths in the original tree. The inverse wavelet 

transform of the resultant tree yields a new instance of the input sound.  



 

The multi-resolution output tree is generated by choosing wavelet coefficients, or nodes, representing parts 

of the sample only when they are similar using a longest matching suffix distance metric. Each new node of 

the output wavelet tree is generated level-by-level and node-by-node from the left to the right, starting from 

the root node. At each step, a wavelet coefficient is chosen from the source wavelet tree such that its node’s 

ancestors and predecessors are most similar with respect to the current new node in the sound being 

synthesized (Figure 20). Wavelet coefficients from the same level are considered as potential candidates to 

replace it if they have similar temporal predecessors (i.e. the nodes to the left on the same level) and scale 

ancestors (i.e. the upper-level, coarser wavelet coefficient). Two nodes are considered similar when the 

absolute difference between their respective ancestors’ and predecessors’ wavelet coefficients is below a 

certain user-defined threshold δ. A small value of δ ensures fidelity to the input sound and a large value 

allows more randomness. 

 
Figure 20: BJ Synthesis step during the construction of a portion of a multi-resolution wavelet-tree: Level 5 nodes in the 
new tree are synthesized by stepping through each parent node at level 4.  For each node in level 4, we find a winning candidate, 
in the input tree, that depends on its scale ancestors (upper levels, pointed at in Red) and temporal predecessors in the same level 
(those to its left on level 4, pointed at in Blue). The children of the winning candidate are then copied onto the corresponding 
positions at level 5. 

 
A nodal match is found by first searching all the nodes at the current synthesized tree level for nodes with 

the maximum number of ancestors within the difference threshold δ. This initial candidate set Canc is further 

reduced to candidate set Cpred, by retaining only the nodes from Canc with the maximum number of up to k 

predecessors within the difference threshold δ (where k is typically set to 4).  The winning node is randomly 

chosen by uniformly sampling from candidate set Cpred. More specifically, the following steps in  



 

Figure 21 are performed during the synthesis phase. 

 

 
Figure 21: The tree synthesis algorithm overview. 

3.3.2 Directed Sound Synthesis 

The BJ algorithm works on both stochastic and periodic sound textures. However, no control is possible 

over new instances of a sound texture.  We now introduce high-level user-control over the synthesis 

process. This is achieved by enabling the user to specify which types of sounds from the input sound should 

occur when, and for how long, in the output synthesized sound. These user-preferences translate into either 

hard or soft constraints during synthesis. An overview of this constrained synthesis is given in Figure 22. 

Note that only once the user has selected the source segments and defined the target sound length, can the 

instances of the target sounds be defined. The synthesis uses these selections to constrain the wavelet-

coefficient recombination. In this section, we first look at how these synthesis constraints are defined, and 

then by what means they are enforced in the modified BJ algorithm. 

• Build wavelet-tree t of input sound 

• Randomly select root of new tree t’ 

• For every node of every level in t’, starting from the top: 
o Canc = All nodes in t at same level found with maximum number of ancestors within 

difference-threshold δ 
o Cpred = All nodes in Canc found with maximum number of predecessors within 

difference-threshold δ 
o Winner is randomly picked from Cpred by uniform sampling 
o Copy winner node’s children wavelet coefficients into t’ 

• Apply inverse wavelet transform of t’ to synthesize the new sound. 



 

 
Figure 22: Constrained sound synthesis overview. First, the user selects the source sounds in the input audio (in yellow, top left), 
and when and for how long these sounds are to be synthesized in the target sound (in green, bottom left).  Secondly, the wavelet-tree 
representation of the input audio is obtained, as well as an empty tree for the target sound. The nodes corresponding to the 
source and target regions are appropriately tagged. By recombining the wavelet coefficients whilst satisfying the user-constraints, a 
statistically similar variant of the original audio’s wavelet tree is generated. The inverse wavelet-transform is then performed on it 
to produce the target sound texture. 

 

3.3.2.1  Constraint Specification 

In order to synthesize points of interest in the soundtrack, the animator must identify the synthesis 

constraints. First, the user selects a source segment in the sample sound such as an explosion in a battle 

soundtrack (Figure 23). Secondly, the animator specifies a target segment indicating when, and for how long, 

in the synthesized sound the explosions can be heard. The constraints for the rest of the new soundtrack 

can be left unspecified, so that in our System Overview video example (on the DVD-ROM), a battle-like sound 

ambience will surround the constrained explosion. 



 

 
 

Figure 23: Soundtrack Synthesis for a Video sequence: The target video (Top-lower) is a rearranged soundless version of the 
source video (Top-upper). The explosion sounds in green, along with machine gun sounds in red (Middle-upper), are defined as 
synthesis constraints in the target soundtrack (Middle-lower). These constraints are used to guide directed sound synthesis into 
generating the appropriate soundtrack for the target video (Bottom). 

The source and target segments, each defined by a start and end time, are directly specified by the user on a 

familiar graphical amplitude× time sound representation. Since the target soundtrack has yet to be synthesized 

and therefore no amplitude information is available, target segments are selected on a blank amplitude 

timeline of the length of the intended sound. Note that the number, length and combinations and overlap of 

source and target segments are unrestricted, and that exclusion constraints can also be specified so as to 

prevent certain sounds from occurring at specific locations. 



 

The user can associate a probability with each constraint, controlling its influence on the final sound. To this 

end, a weighting curve is assigned to each target segment, designating the probability of its associated source 

segments occurring at every point in the target area. The weights vary in [-1, 1], where -1 and 1 are 

equivalent to hard-constraints guaranteeing, respectively, exclusion or inclusion. Soft-constraints are defined 

in the weight ranges (-1,0) and (0,1) specifying the degree with which exclusion or inclusion, respectively, is 

enforced. Furthermore, the reserved weight of 0 corresponds to unconstrained synthesis (Figure 24). In the 

special case where all weights are set to 0, unconstrained synthesis is identical to the original BJ algorithm. 

 
Figure 24: Nodal weighting scale. Going from left to right: nodes with weight -1 have no probability of occurring; improbable 
nodes range from (-1, 0); unconstrained nodes are set by default to 0; more probable nodes are in the range (0,1); finally node with 
weight equal to 1 impose hard-constrained synthesis. 

 
In order to use these constraints in our algorithm, we need to extract all leaf and subsequent parent nodes of 

the wavelet tree involved in synthesizing the source and target segments for each constraint. Figure 25 

depicts the node determination process for a given source segment. Each source and target segment 

combination defines a unique constraint },...,2,1{ nc∈  such as the explosions constraint and the gun-shots 

constraint. There are no limits as to the total number of constraints n. For each constraint c , we define two 

nodelists cS  and cT , which contain the tree level and position offset of all nodes in, respectively, the source 

and target wavelet-tree involved in the constraint specification of c . cT  additionally contains the constraint 

weight associated with each node for constraint c . During the directed synthesis process, if the currently 

synthesized node is defined in cT  then this determines which nodes from cS , and subsequently in the input 

wavelet-tree, should be used as potential candidates. We define },...,,{ 21 nSSSS =  as the overall set of 

source nodes and },...,,{ 21 nTTTT =  as the overall set of target nodes over all constraints n. 



 

 
Figure 25: (Bottom) The user selects the black time segment on the time-amplitude representation of source sound. (Top) This 
enables the extraction of its corresponding wavelet coefficients (Blue nodes) in the balanced binary wavelet-tree required to 
generate that same segment. 

 

3.3.2.2  Hard and Soft Constrained Synthesis 

Now that we know the source origins of every node at every level in the target tree, we can modify the BJ 

algorithm to take these constraints into account. In addition to enforcing similar ancestors and predecessors, 

successor restrictions are imposed. Successor nodes are defined as the neighbouring nodes appearing 

forward in time at the same tree level. During synthesis, potential candidate nodes are partitioned into the 

set of constrained w  and unconstrained nodes w  depending on the nature of their successor node.   

In order to avoid perceptual discontinuities in the synthesized sound, the algorithm looks at distant 

successors instead of just the immediate successors. This allows for better anticipation of future sound 

constraints. Nodes that appear before or after a source sound in the input soundtrack will more likely be 

selected, respectively, before and after a target sound in the synthesized soundtrack. The more we go down 

the tree, the further away is the successor node in nodal terms. Let d be the successor look-ahead distance 

defined as d=2l.k, where l varies from 0 to n corresponding respectively to the root and leaf levels of the 

tree, and k is a user-constant defining the anticipation strength (typically set to 5%). In this manner, d is kept 

consistent at different tree levels. We use d to split up the space of all nodes into the set of constrained and 

unconstrained nodes before carrying out matching on every node. 

 
 



 

 

 

Figure 26: Candidate selection for 

constrained set cw . Depending on the 
current synthesis position, the synthesis 
constraints change along with the set of 
candidate nodes cw  that satisfy these 
constraints. (A) The source tree on the 
left is generated from the input 
soundtrack. The blue nodes determine the 
set of source nodes cS . The empty target 
tree on the right determines the nature of 
the new sound. The blue dashed nodes 
define cT  and indicate where nodes from 

cS  are desired. (B) At synthesis step p, 
node i is being synthesised in the target 
tree. Its anticipated successor node i+d is 
the node d positions to the right of node i, 
where d is the look-ahead distance. Here, 
node i is outside  cS  and  its successor 

node i+d is inside cS . Therefore, the 

constrained candidate set cw  is formed of 

any nodes in the input tree outside cS  

with a successor in cS . (C) At synthesis 
position at step p+3, the constrained 
candidate set cw  is formed of any nodes 

in the input tree inside cS  with a 

successor in cS . (D) At synthesis 
position at step p+5, the constrained 
candidate set cw  is formed of any nodes 

in the input tree inside cS  with a 

successor outside cS . 

 



 

 
If for constraint c  the currently synthesized node belongs to  cT  or has its d-th successor in cT , or both, 

then cw  is the corresponding set of candidates inside and outside cS  satisfying the same constraint 

conditions (see Figure 26). Let all remaining nodes be contained in the set cw . Nodal matching is then 

separately carried out on both cw  and cw  in parallel, resulting in two candidate sets cw
predC  and cw

predC , 

defined respectively as the constrained candidate set and the unconstrained candidate set. They define the 

best matching candidates for both the constrained and unconstrained sets for constraint c .  

The winning node is then randomly chosen by non-uniformly sampling from cc w
pred

w
predpred CCC ∪= . Nodes 

in cw
predC  are given the default weight of 0 whereas the ones in cw

predC are all given the weight of cT ’s current 

weighting1. Depending on cT ’s weight value, this has the effect of biasing the selection process in favour or 

against the nodes in cw
predC . If cT ’s current weight is a hard-constrained 1 inclusion, then the winner is 

picked by uniform sampling from cw
predpred CC =  only. If cT ’s current weight is a hard-constrained -1 

exclusion, then candidates in cw
predC  are ignored and the winner is picked by uniform sampling from  

cw
predpred CC =  only.  

In the case where multiple overlapping constraints are defined for the currently synthesized node, then there 

will be several sets of constrained iw
predC  and unconstrained iw

predC  candidates; one for each constraint i. 

These sets are combined to form a single set of constrained and unconstrained candidates from which the 

algorithm can pick. We therefore get 
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 where n is the number of 

overlapping constraints. Nodes in I
ni

w
pred

iC
,...2,1=

 are given the default weight of 0 and the ones in each iw
predC  

are given the weight in iT  for  their constraint i. If a candidate z  is included in multiple constrained sets 

from j  separate constraints  (i.e. that 
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∈ ) then its weight is averaged out over all corresponding 

constraints weights in { }jiT ,..,2,1= . 

                                                 
1 Note that the weights are actually converted from the range [-1,1] to [0,1] before non-uniform sampling. We used the range [-1,1] since it is 

more intuitive to the end-user. 



 

While the above algorithm works well in most cases, sometimes the quality of the matches found in cw
predC  

might be inferior to those found in cw
predC  due to the reduced search space. We therefore want to prevent 

significantly inferior matches from cw
predC  being chosen in order to maximize audio quality. This is controlled 

by ensuring that the sum of the maximum number of found ancestors in cw
ancC  and predecessors in cw

predC  is 

within a user-percentage threshold r of that of cw
ancC  and cw

predC . Let 
cwm  and 

cwn  be, respectively, the 

number of ancestors and predecessors for the best candidates currently in cw
ancC  and cw

predC  within the 

randomness threshold δ. Let 
cwm  and 

cwn  be their equivalent in cw
ancC  and cw

predC , then if  

( ) ( )
cccc wwww nmrnm +<+ , the candidates from cw  are discarded (r is usually set to 70%). The threshold r 

controls the degree with which soft-constraints are enforced at the cost of audio quality. We adopt a 

different strategy for hard-constraints as explained below. 

In the naïve BJ algorithm, initial candidates include all nodes at the current level. Doing this over the whole 

tree results in a quadratic number of checks in the source tree. Hence, a greatly reduced search space is 

obtained by limiting the search to the children of the candidate set of nodes of the parent. However, on the 

borderline between unconstrained and hard-constrained areas, the reduced candidate set might result in 
cw

predC  being empty, since no node is within the imposed threshold limits. Consequently, in our algorithm, if 

no candidates are found in cw
predC  whilst in hard-constrained inclusion mode, a full search is conducted in cS . 

If matches within the threshold tolerance still cannot be found, the best approximate match in cS  is utilized 

instead. 

3.3.3 User Control of  Synthesis 

In this section, we use our controlled algorithm to present three different user-interaction methods to 

specify the synthesis constraints. These include manual, semi-automatic and fully automatic constraint 

definition. 



 

3.3.3.1  Manual Control 

 
Figure 27. Manual Constraint Specification. (Top) Source regions A and B. (Middle) Weighting curves for A and B.  
(Bottom) Directed synthesis output. 

The user starts by specifying one or more source regions in the sample sound. In the example depicted in 

Figure 27, two distinct source regions are defined corresponding to areas A and B (top). Note that A is 

defined by two segments which define the same source A. The user then draws the target probability curve 

for both sources A and B directly on the timeline of the new sound. A's weighting is -1 except for two 

sections where short and smooth soft-constraints lead to a 1-valued hard-constraint plateau. This results in 

region A smoothly appearing twice, and nowhere else. On the other hand, B’s curve also defines two 

occurrences but is undefined elsewhere, imposing no restrictions. Thus sounds from B might be heard 

elsewhere where unconstrained synthesis is utilized. 

3.3.3.2  Semi-Automatic Control 

In this mode of interaction, the motion data in the target animation is used. The user associates sound 

segments with motion events so that recurring similar motion events trigger the same sounds. It is based on 

query-by-example [Keogh and Pazzani 1999] where the animator selects a reference sound or motion 

segment and asks the system to retrieve perceptually similar occurrences. 

This results in a faster specification of the synthesis constraints since only one constraint is specified. This is 

especially true over extended animations and soundtracks. The selection of a single motion segment and its 



 

target sound triggers the definition of multiple constraints. All motions similar to the query motion in the 

rest of the animation are assigned the same target sound. Sounds similar to the target sound are also 

detected and assigned to the same sound constraint. 

Let us take the example of a car animation. The animator wants each turning motion of the car to 

correspond to tyre-screeching sounds from a given car sounds soundtrack. Firstly, only one car turning 

motion is selected by the user and all other turning motions are found. Secondly, the animator finds a single 

sound and lets the system find all other occurrences of that same sound. These sounds are then assigned as 

constraints to all turning motions. This gives more variety in the synthesized soundtrack since there is a 

larger set of slightly different tyre-screeching to pick from for each turning motion. 

We now look at the different motion and audio matching strategies, as well as how audio synthesis weights 

for each motion match are determined. 

 
3.3.3.2.1 Motion Matching 

In this mode of interaction, the motion data in the target animation is used.  The user associates sound 

segments with motion events so that recurring similar motion events trigger the same sounds. We detect all 

these recurring motion events, if any, by finding all motion segments similar to the query motion. Users can 

roughly control the number of non-overlapping matches by setting the minimum threshold similarity θ. A 

value of zero of threshold θ corresponds to the lowest detected similarity measured, and 1 to the highest. 

Alternatively, the user can directly specify the maximum number of returned matches n. The system then 

returns up to n top matches ranked by their similarity to the query motion.   

The techniques used to match over multi-dimensional motion curves, ranging from one dimensional 

positions or angle variations to high-dimensional motion capture sequences, are detailed in Chapter 4.  The 

process is illustrated in Figure 28 and Figure 29 for the case of a one dimensional positional motion curve. 

 

 



 

 

Figure 28. Finding matching motions. (Top) Motion segments A and B are first selected from the animation by the user. These 
define the query motions for which all similar occurrences must be detected.  Motion matching is therefore performed to find all 
qualifying matches given the current matching thresholds. (Bottom) Two similar occurrences of query motion A are located at 
match A-1 and A-2; and only one occurrence, B-1, for query motion B.  

 

Figure 29. Automated sound synthesis constraint specification. Following on from Figure 28, the user-selected motions A 
and B are both assigned to separate source sounds from a separate soundtrack (top). These source sounds automatically become 
synthesis constraints for both the query motion and their respective matches (bottom). The resulting soundtrack, obtained by 
constrained synthesis, will accordingly trigger similar sounds for recurring query motions. 



 

The matches only define the locations of the synthesis constraints on the target soundtrack. A weight must 

then be assigned to each constraint. By default, each motion that matches the user-selected motion is given 

the same weight in the synthesis. Alternatively, the synthesis weightings can be made proportional to the 

strength of the corresponding matches. The effect is that strong motion matches will have a high probability 

of having the same audio properties as the query, and conversely for weak matches. Given a match x , its 

audio strength xw  is therefore defined as: 
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where: 
x   is the current match 

xw  is the audio weight of x , ranging from -1 to 1 

qw  is the query’s initial audio weight (set by the user), ranging from -1 to 1 

xS  is the normalised similarity measure of x , ranging from 0 (dissimilar) to 1 (similar) 
θ   is the minimum threshold similarity for acceptable matches, ranging in (0,1) 
c   controls the global impact of the match strength xS on xw  

  
xw  will approach the value of qw  when xS  is close to 1. In other words, the match’s final weight will 

approach the query weight the more similar it is to the query motion. xw  is not directly proportional to the 

absolute value of xS  but to its relative value compared to θ.  The reason for this becomes apparent when 

the similarity threshold θ needs to be set close to 1 to select the desired matches.  The relative similarity 

difference between the matches determines each match’s final weight. Otherwise, there would be very little 

difference between each match’s final weight if the relative similarity difference between the matches was 

not taken into account. The term c  is included to give the animator a global control over the effect of the 

matching strength on the resulting audio weights. If c  is set to 0 then qx ww =  which is equivalent to our 

earlier, default weight assignment method. As c  is increased, the similarity between the query and each 

match determines how close xw  is to qw . 

 
3.3.3.2.2 Sound Matching 

Our system is further automated by performing audio matching to find similar audio segments to the query 

sound segment in the rest of the sample soundtrack. These audio matches, along with the query audio, are 

combined to form the same source audio segment for the motion matches. This is especially valuable and 



 

timesaving for selecting frequently recurring sounds over extended soundtracks. The animator only has to 

find a single occurrence of the source sound without having to sift through the whole soundtrack. 

Matches are determined using the set of audio matching techniques introduced by Spevak and Polfreman 

[2001]. Amongst their alternative retrieval algorithms, we use the computationally efficient and most 

successful, plain trajectory matching algorithm. This offers robust and perceptually accurate matches since it 

is based on Mel Frequency Cepstral Coefficients (MFCC) [Hunt et al. 1996]. MFCC are a perceptually 

motivated compact representation of the spectrum used in speech processing and recognition. They are 

based on the discrete cosine transform of the log amplitude and smoothed discrete Fourier spectrum. An 

MFCC vector is extracted for every 20ms frame of the soundtrack. These vectors have thirteen cepstral 

coefficients that characterize the broad shape of the spectrum at each point in the soundtrack. Further 

details on how MFCC are extracted are given in Section 3.5.1.1.1. Matches are determined by finding non-

overlapping audio segments with a series of similar MFCC vectors to that of the query audio. In other 

words, the trajectory in feature space of the query audio consists of a series of MFCC vectors. This 

trajectory is compared to every possible test trajectory of equal length over the whole soundtrack. Distance 

at every frame is measured using a one-to-one Euclidean distance measure of each frame’s respective 

MFCC. Peak picking detects the set of potential matches and a minimum distance rule enforces a minimal 

inter-onset interval between adjacent or overlapping matches. Animators can roughly control the number of 

matches by setting the minimum threshold similarity percentage, or by directly setting the maximum number 

of returned top-n matches. The matching steps are depicted in Figure 30. 

 

Figure 30: MFCC-based audio matching process. 

Figure 31 illustrates the matching process in the case of trajectory matching on a given sample sound. First, 

the animator selects the query segment from the soundtrack. The distance to the query is then measured 

over the trajectory in feature space. In this example, only the top-four best matches’ minima from the 

resulting distance curve were kept. 

 



 

 

Figure 31: Audio Trajectory Matching. The user first selects the query sound (in red) from the amplitude waveform (top) or 
spectral representations (bottom) of the input soundtrack. The similarity to the query is then calculated over the trajectory in MFCC 
feature space. In this example, only the matches from the resulting similarity curve were kept (in green). These correspond to the 
best four minimum values of the distance curve.  

3.3.3.3  Fully-Automatic Control 

In contrast to the approaches above, this method requires practically no user-intervention beyond providing 

the following inputs: a sample animation with its soundtrack, and a different animation, preferably of the 

same nature. After the user specifies the steering motion track, a new soundtrack is automatically 

synthesized with a high probability of having the same sounds for the same motion events as those in the 

sample animation. The method is depicted in Figure 32. 

 



 

 
 

Figure 32 Phases involved in fully-automatic control: (Phase 1) The source motion, its soundtrack and the target motion are 
entered. (Phase 2) Both motions are broken up at sign changes in their first derivative. (Phase 3) Matches between the source and 
target motion fragments are found. (Phase 4) Each fragment in the target motion now has a source audio segment assigned to it. 
These audio fragments are used as synthesis constraints to generate the soundtrack for the target animation. 

We therefore need to determine which portions of the source motion best match with those in the new, 

target motion. This is achieved by repurposing the motion matching algorithm recently presented by Pullen 

and Bregler [2002], originally used for motion enhancement. The motion curve is broken into segments 

where the sign of the first derivative changes. For better results, a low-pass filter is applied to remove noise 

beforehand. All of the fragments of the (smoothed and segmented) target motion are considered one-by-

one, and for each we select whichever fragment of source motion is most similar. To achieve this 

comparison, the source motion fragments are stretched or compressed in time to be the same length as the 

target motion fragment.  We then calculate the Euclidean distance between each target fragment to every 

other source fragment. Note that we ignore fragments under one fourth as short or over four times as long 

as the target fragment being matched. Only the K closest matches (we use K=5) for each target fragment are 

kept (see Figure 33 and Figure 34). If the motion is multi-dimensional (such as motion capture) the splits 

occur at changes in derivative of the motion’s barycentre, and the total fragment distance is summed over all 

dimensions. 



 

 
Figure 33: Motion Fragment Matching Process. (a) In Blue, the target fragment to be matched. (b) All valid source fragments 
to which the target fragment must be compared to. (c) The same source fragments are time-warped to be of the same length as 
the considered target fragment. (d) Only the top 5 closest matches are used in the optimal path calculation. 

 

 
Figure 34: K-closest matches. For each fragment of the target motion (in blue), the 5 closest source fragments are displayed. 

 
An optimal path is found through these possible choices to create a single stream of fragments. The 

calculated path maximizes the instances of consecutive fragments as well as maximizing the selection of the 

top K closest matches. For each target fragment, we evaluate the cost of transitioning from one K-closest 

source fragment to another. A penalty score of 1 is given to non-consecutive source fragments, and 0 for 

consecutive ones. The algorithm finds all possible combinations of fragments that go through the points of 

zero cost. Figure 35 illustrates the case where only the top 3 nearest matches are kept. The top row shows 

the target fragments, along with their top 3 nearest source fragments in the bottom row. The blue lines 

indicate that these source fragments are consecutive in the original source animation, indicating a path of 

zero cost. Any of the following best paths can be chosen: 4-5-6-2, 4-5-4-5 and 1-2-4-5 since they have two 

instances of zero cost (i.e. consecutive fragments). Note that in path 4-5-6-2, fragment 2 is selected since it 

is the closest match. 



 

 
Figure 35: Optimal path determination. In this example case, we are looking for the optimal source fragment sequence for the 
given 4 target fragments.  The top row shows the target fragments, along with their top 3 nearest source fragments in the bottom 
row. The blue lines indicate that these source fragments are consecutive in the original source animation, indicating a path of zero 
cost. 

Given the optimal fragment path, we then assign the audio of the matching source fragment to that of the 

target fragment. At the end of this process, every target fragment has been assigned a single source audio 

segment taken from its matching source fragment. From this, an index of source/target constraint 

combinations is constructed by merging targets with overlapping sources. In practice, better results are 

obtained when preferred nodes have weights just over 0. This is because hard-constraints can produce 

artefacts if used extensively. Furthermore, additional weighting is given to perceptually significant sounds so 

as to increase the likelihood that they will be enforced. Weights are therefore made proportional to the 

average RMS volume over the entire audio segment. Louder sounds usually attract more attention and 

therefore should have higher priority. 

 The resulting target soundtrack is higher quality if there are sections in time where fragments that were 

consecutive in the source data are used consecutively to create the path. As we have seen, this is 

accommodated by Pullen and Bregler’s [2002] method as the algorithm considers the neighbours of each 

fragment, and searches for paths that maximize the use of consecutive fragments. 

3.3.4 Conclusion 

In this section, we have introduced multiple interaction modes to provide a variety of user intervention 

levels ranging from precise to more general control of the synthesized soundtrack. Ultimately, the fully-

automated method provides users with a quick and intuitive way to produce soundtracks for computer 

animations. In order to achieve this, we have described a new sound synthesis algorithm capable of taking 

into account users’ preferences, whilst producing high-quality output. 

 



 

3.4 Natural Grain-Based Sound Synthesis 

The following section details a controlled sound synthesis method based on Hoskinson and Pai’s [2001] 

natural grain-based synthesis. The motivation was to determine if a different synthesis paradigm would yield 

better quality results over a wider variety of sound types.  Natural grain-based synthesis operates at a coarser 

level by first analyzing and segmenting the input into variable-sized chunks that are recombined into a 

continuous stream, where each chunk is statistically dependent on its predecessor.  

Although the synthesis mechanism is radically different from the wavelet-approach, the interaction is 

similar. Synthesis constraints are defined in the same manner for the manual, semi-automatic and fully 

automated interaction modes. In addition, a new mode of operation is introduced that uses audio to 

constrain the synthesis process. 

3.4.1 Natural Grain-Based Unconstrained Sound Synthesis 

The general approach taken here is to find places in the original soundtrack where a transition can be made 

to some other place in the soundtrack without introducing noticeable discontinuities. A new sound is 

synthesized by stringing together segments from the original soundtrack. This synthesis method can be 

broken up into two stages: the analysis phase and the synthesis, or recombination, phase. 

3.4.1.1  Analysis Phase 

In the analysis stage, the sound is segmented to determine natural transition points. The sound between 

these transition points is considered atomic and not broken up any further. The soundtrack is broken up 

into short windows for which the energies of each of the first six levels of wavelet coefficients are 

calculated. The scheme is derived from Alani and Deriche [1999], originally used to segment speech into 

phonemes. The idea is to find local changes in the audio by measuring the correlation between 

corresponding wavelet levels across adjacent frames. 

The soundtrack is first divided into small windows of 1024 samples, with 256 samples of overlap. For an 

input at 44Khz, each frame corresponds to 23.2 ms.  A frame is characterized by its top six levels of the 



 

wavelet transform coefficients. The energy of each level between two frames is given by the sum of the 

absolute values for each level of coefficient differences. These energies are used to measure the correlation 

between adjacent frames throughout the soundtrack. A Euclidean distance over 4 frames is used to measure 

the strength of transition between frames a and b, as given below: 

  

 
where i and j are the frame numbers, k, p and q are the wavelet levels and  kiX ,  and kjX ,  are the energies of 

wavelet coefficient levels on level k of the input sound. The denominators correspond to normalisation 

terms that divide each level’s energy by the sum of energies in that frame. This focuses the correlation on 

the differences in strength of bandwidths between frames. The process is depicted in Figure 36 for frames 

a=2 and b=3. 

 
Figure 36: Correlation measure between frames a=2 and b=3. The Euclidean distance between each wavelet coefficient level 
is calculated and added up to obtain an overall distance measure between frames. The arrows represent difference calculations 
between matching levels. Four frames are necessary to calculate the distance between frames 2 and 3. 

Once all coefficient levels are compared, the differences between them are summed to yield the total 

difference measure between two frames. This results in n-3 distance measures for a soundtrack with n 

frames (since the first and last two are ignored) representing the degree of change between a frame and its 

immediate neighbours. 
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Segmentation points are then identified by finding the local minima in the sequence of frame distance 

measures.  These transition points correspond to locations in the audio where it changes the least suddenly. 

They determine the natural grains forming the input, the granularity of which is controlled by the user. A 

threshold is given to this end, so that the differences that are below it are taken as new grain boundaries. For 

small thresholds, splits at points of little change are thus favoured, whilst those at points of relatively large 

amounts of change are discouraged. The threshold defaults to 25% of the total possible number of grains 

ordered by the size of their local minimum, as in the case depicted in Figure 37. All transitions with an inter-

onset interval under 4 frames are ignored.  

 

 
Figure 37: Example segmentation of a waveform. The vertical black lines indicate points of segmentation. 

3.4.1.2  Recombination Phase 

Before synthesis can start, we need to establish which grains flow most naturally from any given grain. Only 

after this can randomized variants of the input soundtrack be generated that retain as many of its original 

characteristics as possible. To this end, the method featured above to calculate inter-frame energy distances 

is used once again. The distance metric allows us to construct probabilities of transition between every grain 

by comparing the distance between the end of the grain to the beginning of all other grains. 

The sound texture is essentially a Markov process, with each state corresponding to a single grain, and the 

probabilities Pij corresponding to the likelihood of transitions from one grain i to another j. Let pij = 1/D(i,j) 

where D(i,j) is defined as the differences in normalized energy metric of the last two windows of i and the 

first two windows of j. All the probabilities for a given row of P are normalized so that ΣjPij = 1, then: 
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where n is the number of grains and C is a damping constant. The magnitude of certain probabilities might 

be significantly greater than others and cause repetitions in the synthesized sound. This is alleviated with the 

damping constant C which helps to even out the grain weightings. Higher values of C will give smaller 

probabilities more chances of being picked, whilst de-emphasizing (though never totally) the preference 

towards highly probable grains. The user can alter the noise constant C to affect the randomness in the 

generated audio. 

The synthesis step does a Monte-Carlo sampling from the empirical distribution P (Figure 38) to decide 

which grain should be played after a given grain. In this manner, the smoother the transition between the 

current grain and the next, the higher the probability that this grain is chosen as its successor.  

 
Figure 38: Example of a generated transition probability matrix. Lighter squares indicate higher transition probability, and 
inversely, darker squares indicate low transition probability. 

A series of grain indices are produced during the synthesis steps. Before the corresponding audio sample 

chunks for each grain are recombined to form the final output, cross-fading over two frames (about 5ms) is 

carried out between successive grains. Since energies are normalized before comparison, boundary 

amplitude changes are not given much weight in the synthesis process. Cross-fading gives a better general 

cohesiveness to the output and eliminates artefacts due to misalignments in signal amplitudes.  

 

3.4.2 Directed Sound Synthesis 

The above algorithm can synthesize both stochastic and periodic sound textures. However, it suffers from 

the same problem as our initial wavelet-based algorithm, in that no control is possible over new sound 

texture instances. Once again, high-level user-control over synthesis is introduced. This is achieved by 

weighting the contributions of different regions in the source signal, in much the same way as for the 

wavelet-based synthesis in Section 3.3.2. Again hard or soft constraints are used to enforce the user-



 

preferences. In this section, we first look at how these synthesis constraints are defined, and then by what 

means they are enforced in our constrained algorithm. 

3.4.2.1  Constraint Specification  

The user can specify which types of sounds from the input soundtrack should occur when, and for how 

long, in the output synthesized soundtrack. As with the wavelet-based approach in Section 3.3.2.1 , a series 

of source and target segments is specified by the user. Again, the number, length, overlap and combinations 

of source and target segments are unrestricted. Exclusion constraints and unconstrained areas are also 

permitted. The user associates a probability with each constraint so as to control its influence on the final 

sound. The weighting scheme also follows the ranges [-1, 1] with hard-constraints defined for weights -1 

and 1. The weights of overlapping targets are added up so that grains that satisfy multiple constraints are 

even more or less likely to occur. 

Therefore, each separate constraint },...,2,1{ nc∈  defines one or more source segments cs  from the input 

sound and one or more target segments cT  in the new audio.  cs  and cT  are defined by a series of locations 

in milliseconds. The piecewise weighting curve cω  defines the likelihood of audio from the source cs  

appearing at every instant of cT .  Once the input audio has been segmented, the grains included in time 

segments cs  form cS , the set of source grains for constraint c . Figure 39 illustrates the process. Note that 

any mismatches between grain boundaries and segment boundaries are resolved by choosing the nearest 

grain boundary to that of the segment’s. 

 



 

 

Figure 39: Parameters defining a constraint c. (Top) The two red squares delineate the source segments cs  as defined by the 

user. All grains included in the Red areas are assigned to cS ,  the set of source grains for constraint c . Any mismatches between 
grain boundaries and segment boundaries are resolved by choosing the nearest grain boundary to that of the segment’s. (Middle) 
The target segments are shown in Green. (Bottom) A weight is assigned to each target segment above.  

3.4.2.2  Hard and Soft Constrained Synthesis 

Directed synthesis is achieved by dynamically biasing the grain probabilities ijP  in the Markov table during 

synthesis so as to maximize constraint satisfaction. Since grains originating from the current targeted source 

are preferred for inclusion constraints, we therefore proportionally increase their associated likelihood of 

being selected. Conversely, for exclusion constraints we proportionally decrease their likelihood of being 

selected. This is done by scaling ijP  proportionally to the weights in each constraint. 

Let i  be the last generated grain and t  the current temporal synthesis position in the target sound, then we 

must rescale all the probabilities ijP  to the next grain j  using the weights in cω  for each constraint c . This 

is only necessary if cT  is defined at instant t .  



 

Calculating the weight for each grain 

Before ijP  is rescaled, the final weight ( )tWj ′′  over all constraints assigned to grain j  must be determined. 

First, the weight of grain j  over a single constraint c  is obtained. Since grains vary in size; we place each 

grain j  at the current synthesis position t  to determine the anticipated overlap between the weighting curve 

cω  and grain j . The overlap is simply  ( )jLtt +,  where jL  is the length of grain j  in milliseconds. 

Therefore, the weight ( )tWc
j  of grain j  over a single constraint c  at position t  is defined as: 
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where: 

j  is the current grain 

jL is the length in milliseconds of grain j  
c  is the current constraint 

( ).cω  is the weighting curve for constraint c  
t  is the current synthesis position in milliseconds 
 

( )tWc
j  is normalised over the grain length to prevent longer grains from obtaining higher overall weights 

and disfavouring shorter grains in the synthesis. The resulting weight is only assigned to grains originating 

from the source grains cS , therefore: 
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where: 

  cS is the set of source grains for constraint c  

The weight ( )tWc
j ′  for grain j  takes into account its membership to the constraint’s source. Only the grains 

that belong to the constraint’s source are affected by the constraint. The weight ( )tWc
j ′  is calculated over all 

constraints n. Therefore, the final weight  value ( )tWj ′′  for grain j  is summed over all constraints:  
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where n is the total number of constraints with their targets cT  defined at instant t . 



 

Since it is possible that a grain belongs to multiple overlapping sources from separate constraints, its weights 

are added up. We want the contribution of each constraint to be accumulated. For example, if constraint A 

has a weight of 0.3 for grain j  at instant t , and constraint B has one of 0.5, then grain j  (which belongs to 

both A’s and B’s sources) will have a cumulated weight of 0.3+0.5=0.8. The final weight is clipped so as not 

to lie outside the [-1,1] range. 

The weight ( )tWj ′′  is calculated for every grain at each new synthesis position t . The effect here is that 

multiple constraints with overlapping targets can affect the choice of the next grain. For example, grains 

from both an explosion sound constraint and a gunshot sound constraint can compete for the same target 

region, while simultaneously disfavouring grains from a laughing sound constraint.  

Rescaling the probabilities 

Once ( )tWj ′′  is obtained for each grain, we can rescale the probabilities of all grains in the following 

manner: 

( )( )1j
ij ijP W t P

η
′ ′′= + ⋅   

where: 
ijP  is the transition probability from grain i  to grain j  

η  controls the overall weight influence 

ijP′  is normalised so that 1=′∑
j

ijP . The overall weight influence η  is user-defined. Bigger values of η  

enforce the constraints more strongly at the cost of randomness and audio continuity. 
 
 

Hard-Constraints 

The resulting probabilities do not take into account hard inclusion and exclusion constraints. Consequently, 

hard-constraints are enforced over the resulting transition probabilities before they can be used.  

In the case where a candidate grain j  has one or more occurrences of a hard exclusion ‘-1’ weight over the 

interval ( )jc Ltt +,ω  for any constraint c , its associated ijP  is set to 0. This ensures that grains with hard 

exclusion constraints will not be selected.  

In the other case where a candidate grain j  has one or more occurrences of a hard inclusion ‘1’ weight over 

the interval ( )jc Ltt +,ω  for a constraint c , the probabilities of all other grains not belonging to the source 

cS  of constraint c  are set to 0. This ensures that only the hard included grains will be selected. 



 

3.4.2.3  Anticipation 

Smooth transitions near boundaries between unconstrained and hard-constrained areas can be difficult to 

achieve. The hard-constrained areas drastically reduce the grain candidate set, forcing the selection of grains 

with low probabilities when jumping from unconstrained to hard-constrained areas and vice-versa. 

Anticipating hard-constraints in the synthesis avoids such situations. Anticipation works by propagating 

grain selection preferences back in time from an approaching hard-constraint ‘1’ area in cT  to the current 

synthesis position t . The goal is to favour grains that have a high probability of having a successor grain 

included in cS . Therefore, a look-ahead mechanism is triggered when the current synthesis position t  is less 

than a distance d  from the start of a hard-constrained area cT  where: 
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where: 

sounds  is the total length of the input sound  

grainn  is the number of grains detected during segmentation 

grains  is the average grain size  

β  controls the anticipation distance (usually set to 5%) 
 

Anticipation works by backtracking from the start of cT  up until the current synthesis position t  with a 

step-size of grains  and using the grain preferences to bias the grain choice at point t .  The effect is that, 

gradually, grains with a high probability of having distant successors in cS  will be favoured.  

Before synthesizing the last unconstrained grain i  before the start of cT , we first find the set of top n grains 

a1 with the highest likelihood that their next grain j  belongs to cS . Grains in a1 are favoured by increasing 

their respective probabilities. These preferences can be propagated back to the current synthesis t  even if it 

is not directly before the start of cT . We simply backtrack in time by grains  and find the top n grains a2 with 

the highest likelihood that their next grain belongs to a1. This continues r times until we reach t  where ar is 

used to bias the choice of the next grain (see Figure 40 where r is set to 3). Before renormalisation, the 

probabilities of the top n grains ar are scaled in the following manner: 
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where the user-threshold α controls the impact of anticipation on the probabilities (usually α is set to 30%). 

The closer t  is to the start of cT , the more the anticipation process will influence the transition probabilities 

for the next selected grain. 

 

Figure 40: Anticipation Process.  The transition probabilities ijP  from the current grain i to the next grain j are rescaled to 
favour smooth transitions from unconstrained areas to hard-constrained ‘1’ areas. The anticipation probability rescaling process is 
activated when a hard-constrained area is detected a distance d from the current synthesis position t. The grains with highest 
probability of having successors satisfying the constraint are propagated back to the current synthesis position. Here, all the grains 
contained in the set a3 will have their weights rescaled.    

3.4.3 User Control 

The grain-based approach benefits from all the interaction methods available to its wavelet-based 

counterpart. In all interaction modes, the constraints are defined in the same manner.  



 

The major change over the wavelet-based approach is in the granularity of the constraints. Instead of 

snapping user-constraint boundaries to the nearest leaf coefficient of the wavelet-tree, they are snapped to 

the closest grain boundary. This results in a coarser match between the region that the user defines and that 

is actually employed by the system. An obvious way to increase the snapping fineness is to decrease the 

grain size. Simply lowering the segmentation threshold in Section 3.4.1.1  has this effect. The negative side-

effect of smaller grains is that more audio discontinuity at the higher grain-level is introduced (further 

discussed in Section 4.1). In practice, only limited grain-size reduction is necessary. Since grains try to 

capture separate audio events, the natural points of transition tend to match up to user-selection boundaries. 

3.4.4 Sound Transfer 

Sound transfer is conceptually similar to texture transfer [Ashikhmin 2001, Efros and Freeman 2001, 

Hertzmann et al. 2001], where an image is re-synthesized with elements of another given texture. The goal 

here is to use audio as the synthesis constraint so as to produce a new sound texture that exhibits some 

similar property (such as volume or pitch) to that of a separate guiding soundtrack Aguide. Figure 41 and 

Figure 42 show the conceptual similarity between texture transfer and sound transfer. A related problem 

was addressed in [Zils and Pachet 2001] where a new sequence was constructed by assembling sound 

samples in a large sound database, by specifying only high-level properties. The difference here is that 

sounds are generated by finding the sound that best fits the current high-level properties, while our work 

generates new sequences based on the statistics of a given input sound. 

 

Figure 41: Texture Transfer Process Overview. 



 

 

Figure 42: Sound Transfer Process Overview 

 

Up until now, to synthesize a new sound Anew, a source sound Asource and a set of source/target constraints 

were required. Instead here, we replace the soundtrack Aguide with another one Anew, built up from sounds in 

Asource, by simply matching some feature of the old soundtrack Aguide with that of the new soundtrack Anew. 

That way, we can change the building blocks of a soundtrack, without changing its overall properties. The 

process is summarized below in Figure 43 for a voice-driven example. In this example, the RMS volume of 

voice sample is used to drive the synthesis from a screaming source soundtrack. A plot of the guiding and 

synthesized sounds, along with their RMS features, is shown in Figure 44. 

 

 

Figure 43: Audio-driven synthesis steps. A guiding audio’s audio feature constrains the synthesis from a source audio sample. 



 

Let i  be the last generated grain and t  the current temporal synthesis position in Anew, then we must rescale 

all the probabilities ijP  to the next grain j  so as to maximize the likelihood that grain j  will exhibit similar 

audio properties to that of Aguide at the same position t . 

The user first defines the audio feature, or weighted combination of audio features, to use for the matching. 

This could be the Mel-Frequency Cepstral Coefficients, RMS volume, short time energy, zero crossing rates, 

brightness, bandwidth or spectrum flux. These features are then pre-calculated for every sliding window 

position in Asource previously used in the segmentation algorithm. The same is also carried out over Aguide. 

The features are used to calculate the distance ( )tDj  between all the windows from Asource forming the 

potential next grain j  and the corresponding windows in Aguide:  
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where: 

( )tAguide  is the window from Aguide at position t  

( )tAsource  is the window from Aource at position t  

j is the potential next grain 

jn is the total number of windows forming grain j  

K is the total number of constraining audio features 
( )xkψ  extracts audio feature k  from the given window x  

( )xkω  is the weighting curve for each constraining audio feature k  for the given window x  

 
A set of audio features can potentially influence the final distance ( )tDj . The impact of each constraining 

audio feature can be changed over time in much the same way as for source/target constraints detailed 

earlier in Section 3.4.2.1 . The weighting curve ( )xkω , assigned to each constraint audio feature k , is used 

for this purpose.  Individual features can be given more impact on the calculated distance so that their 

influence on the final synthesized output is conveniently configurable. Weights can be negative so that 

grains that are similar to the target sound are discouraged. 

Before synthesizing each new grain, ( )tDj  is evaluated for all potential next grains and its renormalized 

value is used instead of weight ( )tWj ′′  in the probability rescaling equation in Section 3.4.2.2 . This yields 

the following probability rescaling function: 



 

( )( )1ij j ijP D t P
η

′ = + ⋅  
 

where η  controls the overall weight influence. The synthesis then proceeds as normal with these rescaled 
weights. 
 
 
 

 
Figure 44: Example audio-driven synthesis output. The RMS volume of voice sample is used to constrain the synthesis of the 
new sound from a screaming source soundtrack. Notice how the RMS volume of the synthesized soundtrack roughly matches that 
of the guiding voice sample.  

 
 
 



 

3.5 Self-Similarity-Based Sound Synthesis 

The potential of self-similarity-based sound synthesis is investigated. This synthesis paradigm is extended to 

a controllable model in much the same way as for our previous natural-grain based model. The goal is to 

investigate if better synthesis quality results over a wider-variety of sound types can be obtained compared 

to both the wavelet and natural grain based approaches. This section follows the same structure as for the 

natural-grain approach in Section 3.4.   

3.5.1 Self-Similarity-Based Unconstrained Sound Synthesis 

Lu et al. [2002] presented a new sound texture approach that makes use of the inherent self-similarity in 

sounds. The premise is analogous to that of Hoskinson and Pai [2001] where the sound is segmented into 

smaller chunks and statistically recombined to limit audio discontinuities. The difference between the two 

algorithms lies in their segmentation and sound continuity measures. The natural grain-based approach 

segments along points of least change, whilst the self-similarity approach uses auto-correlation to find onsets 

of distinct sound events. Transition probabilities are now based on perceptual continuity across whole 

grains, and not over the amount of audio change in the first and last portions of grains. The self-similarity 

algorithm therefore divides into two stages: the analysis phase and the synthesis, or recombination, phase. 

3.5.1.1  Analysis Phase 

In the analysis stage, Lu et al. [2002] find the building patterns in an input soundtrack by identifying the 

pattern breakpoints using auto-correlation. A spectral measure, called Mel-Frequency Cepstral Coefficients 

(MFCC) [Logan 2000], is used to characterize the sounds during correlation. A self-similarity matrix is then 

derived by calculating the difference from every frame’s MFCC of the input audio to every other.  The self-

similarity novelty curve, describing the audio change in the input sound, is then extracted from the matrix. 

The maxima of this curve correspond to points of maximum audio change such as pattern breakpoints. By 

breaking up the input sound along these points, the resulting grains form the input’s characteristic building 

patterns. 

  



 

3.5.1.1.1 Mel-Frequency Cepstral Coefficients (MFCC) 

The segmentation scheme first extracts an MFCC representation of audio before the similarity between two 

audio instants is calculated. MFCC are short-term spectral-based features and are the dominant features 

used for speech recognition [Gold and Morgan 2000]. They have also been used successfully for timbre 

analysis in the music domain [Cosi et al. 1994] and for content-based retrieval [Foote 1997]. MFCC are 

frequently preferred over the standard FFT since it is a perceptually motivated and more compact 

parameterisation of sound. Figure 45 depicts the process of creating MFCC features for an input 

soundtrack.  

 

 
 

Figure 45: MFCC creation process. 

The first step is to convert the signal into short 23.2ms frames. The aim is to generate a cepstral feature 

vector for each frame. The Discrete Fourier Transform (DFT) is calculated for each frame. We then retain 

only the logarithm of the amplitude spectrum because the perceived loudness of a signal has been found to 

be approximately logarithmic. The next step is spectral smoothing and Mel scaling to emphasize 

perceptually meaningful frequencies. The Mel-scale is based on a mapping between actual frequency and 

perceived pitch as the human auditory system does not perceive pitch in a linear manner. The spectral 

components are combined into a smaller number of frequency channels, whose spacing complies with the 

Mel-scale of perceived pitch. The mapping is approximately linear below 1kHz and logarithmic above. This 

is achieved by passing the spectrum through a filter bank consisting of 13 linearly spaced filters (133.33 Hz 

between centre frequencies) and 27 logarithmically-spaced filters (separated by a factor of 1.0711 in 

frequency). For a window length of 256 samples, the DFT generates 256 frequency bins that are reduced to 

40 Mel-scale components, defined as the Mel spectrum. The process is depicted in Figure 46.  

 
Figure 46: Rescaled log amplitude spectrum. Each new bin is the averaged local spectral components, spaced following the 
Mel frequency scale. The resulting spectrum is therefore smaller and smoother.  



 

The components of Mel-spectral vectors for each frame are highly correlated. So the last step of MFCC 

feature generation is to de-correlate and compress their components by applying Discrete Cosine Transform 

(DCT). This process yields 13 cepstral coefficients for each frame, defined as the Mel cepstrum. Since the 

DCT is performed with respect to frequency instead of time, the terminology is changed from spectrum to 

cepstrum. A plot of both the amplitude waveform and corresponding MFCC representation is given in 

Figure 47.  

 
Figure 47: MFCC parameterisation. (Top) The amplitude waveform of an example sound. (Middle) A short-time Fourier 
transform of the sound. (Bottom) The corresponding MFCC transform of that sound with 13 coefficients per frame. 

3.5.1.1.2 Similarity Measure and Self-Similarity Matrix 

Given the MFCC for every frame of the input sound, the self-similarity matrix is then extracted. The matrix 

Sij measures the similarity between pairs of cepstral vectors Vi and Vj calculated from frames i and j. Vi and 

Vj are the MFCC feature vectors of frames i and j. Sij is based on the scalar (dot) product of the vectors, also 

referred to as vector auto-correlation. It will be large if the vectors are both large and similarly oriented. To 

remove the dependence on magnitude, the product is normalized to give the cosine of the angle between 

the parameter vectors. Therefore, Sij is defined as: 
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Frames and their associated feature vectors occur at a rate much faster than typical perceptual events, so a 

better similarity measure is obtained by computing the vector auto-correlation over a window of 

neighbouring frames. This also captures the time dependence of the vectors. S therefore becomes S’ defined 

as the weighted sum of the autocorrelation vectors over the previous m and next m neighbouring temporal 

frames with binomial weights [-wm,…,wm]:  
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To result in a high similarity score, vectors in a window must not only be similar but their sequence must be 

similar also. The analysis proceeds by comparing all pair-wise combinations of audio frames and embedding 

the results in the self-similarity matrix S’, as shown in Figure 48. The axes of S’ represent time, running both 

horizontally (left to right) and vertically (top to bottom). Self-similarity is maximal and symmetric along its 

main diagonal.  

    
Figure 48: (Left) Process to create the self-similarity matrix S’. The pair-wise similarity between all frames i and j. (Right) Example 
self-similarity matrix computed for U2’s Wild Honey soundtrack. 

 
The visualisation of S’ in Figure 48 uses the similarity measure to determine the pixel’s greyscale. Pixels are 

coloured brighter with increasing similarity, so that segments of similar audio samples appear as bright 

squares along the main diagonal (from top left to bottom right).  

 

 



 

3.5.1.1.3 Self-Similarity-based Segmentation 

 

  
Figure 49: Sliding Kernel Mechanism. At each increment, the 
cross-correlation kernel slides one time unit along the main 
diagonal; the evaluated result is plotted on the novelty curve for 
that corresponding point in time. 

Figure 50: Cross-correlation Kernel. Plot of a 20 x 20 
checkerboard correlation kernel with a radial Gaussian taper 
having σ= 0.3. 

The self-similarity matrix is used to extract a novelty measure of the audio [Foote and Cooper 2001], which 

is the basis for the audio segmentation. It is extracted by sliding a cross-correlation kernel K along the main 

diagonal axis as portrayed in Figure 49. Points of greater change in the music are identified by maxima in the 

resulting novelty curve N. Hence N is defined as: 
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where w is the size of the kernel. The extrema in the subsequent novelty curve, shown in Figure 51, 

correspond to the largest change in the music. These points coincide with the contact point of two square 

regions in Figure 48.  

The cross-correlation kernel K is approximated by a Gaussian-tapered checkerboard kernel, an example of 

which is given in Figure 50. K is simply a checkerboard matrix made up of coherence and anti-coherence 

terms. The former term measures the self-similarity on either side of the centre point of the matrix. If both 

these regions are self-similar, this term will be high. The other term evaluates the cross-similarity between 

the two regions. High outputs occur with regions of substantial similarity, with little difference across the 

centre point. The Gaussian smoothing tapers the kernel towards zero at the edges. 



 

The input is then segmented into grains at the peaks of N, which correspond to points of greatest change in 

the audio. To enable the re-synthesis process, only the transition probabilities between each grain are now 

required.  

 
Figure 51: Novelty score for the self-similarity matrix in Figure 49. 

3.5.1.2  Recombination Phase 

The unconstrained synthesis process is much the same as that for the natural grain-based synthesis detailed 

in Section 3.4.1.2 .  A distance metric allows us to construct transition probabilities between each grain. 

Instead of comparing the distance between the end of a grain to the beginning of all other grains as in 

Section 3.4.1.2 , the similarity over the total length of both grains is used. Unlike frames, the grains here are 

of varying lengths. Dynamic Time Warping could be used to compare grains, but a simplified method is 

used instead. Given that grain i contains M frames beginning from frame i, grain j contains N frames 

beginning from frame j, then the similarity Tij between two grains is defined as: 
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Better audio continuity is guaranteed if the temporally adjacent grains are considered in the final similarity 

measure.  Therefore Tij becomes  
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where the previous m and next m neighbouring temporal grains have binomial weights [w’-m,…,w’m]. T’

i+1,j is 

mapped to probabilities through the exponential function: 
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Pij gives the transition probability from the i-th grains to the j-th grains where all the probabilities for a given 

row of P are normalized so that ΣjPij = 1. The parameter σ controls the mapping between the similarity 

measure and the relative probability of taking a given grain. Smaller values of σ favour the most likely grains, 

while larger values of σ allow for greater variety at the cost of poorer transitions. The transition probability 

from grain i to grain j depends on the similarity between grain i+1 and j. Since the last grain l does not have 

a successor l+1, the probability for the last grain l depends on the similarity between grain l and j-1. The 

transition probability between the last grain l and the first grain f is undefined, so it is set to zero. A 

visualisation of T, T’ and P is shown in Figure 52. 

Again, the sound texture is essentially a Markov process, with each state corresponding to a single grain, and 

the probabilities Pij corresponding to the likelihood of transitions from one grain i to another j. The 

synthesis step then does a Monte-Carlo sampling of P to decide which grain should be played after a given 

grain.  

 
Figure 52: Grain similarity and probability visualisation. (Top-left) Height-field representation of the similarity table T. The similarity 
Tij between grain i and grain j is indicated by the height Z at position X=i and Y=j. (Top-Right) T becomes T’’ when the neighbouring grains are 
considered in the final similarity measure. (Bottom) P holds the grain transition probabilities obtained from T’’. 



 

3.5.2 Directed Sound Synthesis 

Due to the similarity with the natural grain-based approach, extending the sound texture model above 

requires identical steps to those in Section 3.4.2. The same interaction modes are consequently available, 

including audio-driven synthesis. 

 



 

3.6 Conclusion 

The three novel sound synthesis methods are a step towards automated Foleying for film and television. 

Although it is feasible to use conventional audio software, such as Pro Tools, to manually generate short 

soundtracks, it rapidly becomes costly for the production of extended soundtracks. Re-arranging the whole 

soundtrack so as to produce constantly varying versions of the original would quickly become cumbersome 

in Pro Tools. Also, in our system, constraints can later be changed on-the-fly leading to a full re-synthesis of 

the soundtrack. 

The other major function of our system is to create soundtracks for games, animations and virtual 

environments based on the motions of objects within them. A correspondence between the motion and 

sound domains exists naturally in the real world. In physically-based sound models such as those of van den 

Doel [2001] and O'Brien et al. [2002], the correspondence between motion and sound parameter spaces is 

provided by physical laws. In such cases, the mapping is straightforward.  However, when acoustic realism is 

not the goal, the mapping is not so direct. This is where our system becomes useful. The generality of our 

approach and the use of motion data allow dynamic synchronisation to visuals with little additional 

overhead. To this end, we present several interaction methods, with varying degrees of human intervention. 

The least automatic method still operates at a high level, requiring only that a few weighted correspondences 

between source and target regions be specified. The most automatic method requires only the setting of a 

few algorithm-tuning parameters. Hence, with minimal user effort, we can quickly create pleasing 

soundtracks appropriate to the motions they reflect. 



 

4. Chapter 4 
 

R E S U L T S  
 

 
In the first part of this chapter, the three controllable sound texture models are evaluated with regard to 

sound quality, computational efficiency, controllability and applicability. We want to determine what 

conditions degrade the quality of the synthesized sounds and what can be done to prevent them. A series of 

examples demonstrating the control schemes are detailed. 



 

4.1 Sound Editing Results 

4.1.1 Segmentation 

 
At first, it appears that the wavelet-based approach should work with a wider variety of sounds since no 

implicit sound model is used. However, some sounds might be swapped at perceptually inappropriate points 

such as in the middle of a laugh in our Laughing example on the DVD-ROM. Therefore perceptually-based 

models such as the natural grain and self-similarity based approaches, which identify natural points of 

transition, have an advantage. This depends on how hard it is to find these natural transition points, and if 

these points are model-dependent. In practice, we found that the suitability of automatically detected grain 

boundaries depends on the nature of the input sound. 

The self-similarity-based segmentation is better at identifying pattern breakpoints. For example, in our 

Jackhammer example, it successfully groups jackhammer sounds together from the surrounding construction 

sounds. On the other hand, the natural-grain approach will segment at points of least audio change. The 

result is that the grouping of jackhammer sounds is lost since segmentation boundaries appear in the middle 

of the jackhammer sounds. Even though these boundaries might present better transition points from a 

local audio change perspective, the perceptual impact of breaking the jackhammer sounds up is more 

noticeable in the synthesized soundtrack. 

By contrast, natural-grain segmentation is more effective in the case of our Rain example. The input 

soundtrack consists of tennis practice sounds during a rainy day. An instance of a ball striking sound, 

promptly followed by a net sound, is grouped into a single grain. This is because there is considerable audio 

change during this short extract. With self-similarity segmentation, this extract is broken into two separate 

grains: one for the ball striking sound and another for the ball hitting the net sound. The reason is that both 

these sounds are considerably different from a self-similarity perspective. The problem is that since the net 

sound is in its own grain, it might appear by itself without the prior striking sound in a synthesized 

soundtrack (although the probability would be small). This likelihood is eliminated with the natural-grain 

approach. 



 

An advantage of the wavelet approach is that no segmentation threshold is necessary. With the coarser 

grained approaches, the default segmentation threshold is set to the best 25% of all detected grain 

boundaries. Increasing the segmentation threshold has the advantage that more variability is introduced in 

synthesized sounds, in turn allowing for better constraint satisfaction. The disadvantage is that too much 

segmentation can break audio continuity (such as in breaking up the ball strike from the net sound in the 

Rain example). Therefore, the default threshold typically needs readjusting because the optimum number of 

grains for a given input sound varies with its size, its inherent separability and the granularity of its synthesis 

constraints.  

4.1.2 Continuity 

Audio continuity in the wavelet-based approach is ensured simultaneously at a global, as well as a local audio 

event level. Since the synthesized tree is synthesized level-by-level from the root to the leaves, the algorithm 

can enforce continuity at multiple levels of resolution. It has no a priori knowledge of the input sound which 

is a strength as well as a weakness. Every node of the tree is given equal weight in the synthesis, be it 

perceptually significant or not. This increases the possibility that some sounds might be swapped at 

perceptually inappropriate points. Another problem with the wavelet approach is the introduction of 

convolution artefacts. These convolution artefacts arise because switching coefficients of the wavelet 

transform can sometimes have unpredictable results. Unless the changes are on the dyadic boundaries, it can 

slightly change the timbre of the input sound instead of switching the sound events seamlessly. Although 

infrequent, these changes are difficult to predict. They have to do with the wavelet filter choice and the 

position of the coefficients. Their frequency increases as the enforcement level of conflicting synthesis 

constraints is increased. The wavelet soundtrack synthesized for the Cheering example presents such 

artefacts.  

Transitions, in both the natural grain and self-similarity models, are chosen between distant grains of the 

sample audio so that concatenating these grains does not introduce any discontinuity. Discontinuities may 

be classified by the granularity of their occurrence: 

• Sample-level discontinuities 

At the smallest granularity, the audio sample, discontinuity is in the time domain. If the last few samples 

of the first grain are at their maximum value and the first samples of the second grain are at their 



 

minimum value, an audible click may be heard. Both our coarse-grained approaches suppress sample-

level discontinuities by cross-fading between adjacent grains. 

• Frame-level discontinuities  

In the natural grain model, only the first and last two audio frames between grains are examined to 

establish transition probabilities. We are guaranteed with this approach that the continuity between the 

last two frames and first two frames of sequential re-combined grains will be the greatest. It is therefore 

effective at limiting frame-level discontinuities. The self-similarity approach is less effective at limiting 

frame-level discontinuities since continuity is enforced at the grain level, not at the frame level. This is 

because, during synthesis, each new grain is picked to maximize its similarity across its entire duration to 

that of the last synthesized grain’s following grain in the original soundtrack. 

• Grain-level discontinuities  

At the granularity of a grain, discontinuity can be described as the overall dissimilarity of the joined 

grains. Unnatural timbre fluctuations represents one aspect of dissimilarity. For instance, an explosion 

sounds very different from a scream. Transitioning from the middle of an explosion to a scream would 

create an abrupt change in timbre, awkward to the listener. The self-similarity approach is less prone to 

grain-level discontinuities since the nature of past and present grains determines future grains. Higher-

level temporal continuity is enforced compared to the natural grain approach, which only considers the 

first and last two audio frames between grains to establish transition probabilities. 

The appropriateness of each grain-based method depends on the input sound. If preserving the temporal 

continuity is crucial, then the grain-based approach is better suited since it will provide the smoothest 

transitions. For example, the Medley example’s input sound consists of a series of unrelated cartoon sounds. 

Preserving the grain-level continuity is not essential since there is no extensive temporal continuity. What is 

important to enforce is the best possible frame-level continuity in this case. The self-similarity approach is 

better for sounds where the temporal continuity is preferable over frame-level continuity. For example, in 

the Laughing example, it is essential that the synthesized laughing sounds follow their original temporal 

order.  



 

4.1.3 Repetitions 

Repetitions are a particularly noticeable synthesis artefact. Natural-grain based synthesis is particularly prone 

to repetitions. For example, if the starting frames of a grain are similar to its ending frames, then that grain 

will tend to be repeated. Repetitions are less of a problem with both the wavelet and the self-similarity 

approach since temporal continuity is enforced. They will only occur if they appear in the original sound. 

During constrained synthesis the candidate set of grains or nodes is typically limited increasing the 

possibility of repetitions. Therefore, in all approaches repetitions are discouraged by simply lowering the 

weights of grain or nodal candidates that have just been picked. 

4.1.4 Controllability 

In addition to sound quality, the sound texture must be steerable to comply with the user constraints. The 

first issue is how well the constraints are translated into the model. In the case of wavelet-based synthesis, 

very fine-grained (close to sample-level) snapping to the user-constraint boundaries is possible. Less 

accuracy is available in the natural-grain and self-similarity-based approaches since constraints are snapped 

to the closest grain boundary. Grain-size, in the natural grain approach, can be reduced to increase the 

probability of fitting the user-constraints, at the cost of longer term discontinuities. This effect is less 

apparent in the self-similarity approach since neighbouring grains are taken into account. 

In highly-constrained cases where grain-level discontinuities are difficult to avoid, the self-similarity 

approach is not as effective. More frame-level discontinuities are introduced than in the natural-grain 

approach. This is due to the fact that the natural-grain approach minimizes frame-level discontinuities 

regardless of the nature of previously synthesized grains. It thus guarantees locally smoother sounds, but not 

necessarily with longer term meaningfulness and continuity. 

Better results are obtained if the source and target regions are similar in length, otherwise unexpected results 

can occur. For example, a laughing sequence sounds unnatural if it is prolonged for too long using hard-

constraints. The output quality is further improved by using audio matching to find as many examples of the 

selected source sound as possible. This is because more transitions from non-source sounds to the source 

sound are made available to the algorithm, making it possible to get smoother transitions when a target area 

is encountered. The DVD-ROM examples in the More Manual Synthesis Examples section exhibit a variety of 

constraint circumstances such as one or more hard constraints, soft constraints and constraint overlaps.  



 

4.1.5 Applicability 

Existing sound models, especially physically-based ones, do not support sound textures [Saint-Arnaud and 

Popat 1997]. Our sound synthesis techniques, on the other hand, are particularly well-suited for these sound 

types. In the concept of a sound texture, we include both the stochastic nature of sound over a long stretch 

of time, and the perceptual similarity of any bit of that sound. For example, the ambient noise in a cocktail 

party is always changing in a very complex pattern, but it is globally perceived as the sound of a cocktail 

party. Other examples are fan noise, traffic noise, or even the sound of a (possibly foreign) language. Sound 

textures still comprise a very wide variety of sounds. They are different from timbres, which are one-shot 

sounds. Sound textures can be made up of timbres, but the higher-level organisation of the timbres should 

obey a random distribution, rather than having a musical structure. 

The method does not work in every case. However, there is no clear-cut universal rule defining which 

sounds will or will not work. This is more of a case-by-case issue, also faced by image texture synthesis 

algorithms. All the same, simple heuristics can help users anticipate the appropriateness of a sound with 

regard to its potential re-synthesis quality. Hence, good candidate input sources for our methods are sounds 

that allow themselves to be temporally re-arranged without incurring perceptual problems. This is especially 

true of traffic sounds, crowd recordings, jazz and ambient music, audience laughing and collections of short 

sounds where maintaining the long-term order of occurrence is not essential. In particular, the algorithms 

perform especially well on stochastic, or non-pitched, sounds. These sounds are defined as any non-pitched 

sound having a characteristically identifiable structure.  For example, the sound of rain has a characteristic 

structure that makes it easily identifiable as rain and easily distinguishable from random noise.  Humans 

almost continuously hear stochastic sounds such as wind, rain or motor sounds.  Because of their prevalence 

in real-world environments and consequently video and animation, it is important that these sounds are 

well-supported in our system. This is especially valuable since existing controllable sound synthesis 

techniques tend to have trouble dealing with stochastic sounds. 

Sounds with clear progressions, such as a slowly increasing siren sound, cannot be meaningfully re-arranged 

by hand and therefore, neither by our algorithm. Note that some sounds could be manually re-arranged by a 

user but might still fail our re-synthesis. This is to be expected due to the lack of semantic understanding by 

our algorithm of the nature of the original sound. Similarly, our methods are not appropriate for speech 

processing including human singing. This does not invalidate our work since the supported sound types still 

cover a wide variety of video and animation segments. In some cases, we found that constrained, versus 



 

random, sound synthesis increases the set of re-synthesizable sounds. By careful definition of the synthesis 

constraints, we can ensure that certain sound configurations are never encountered. For example, we can 

forbid a plane free-falling sound, using exclusion constraints, after a plane crashing sound constraint.  

The DVD-ROM examples in all four interaction modes show our synthesis methods working on a wide 

variety of sounds including cheering, laughing, baseball practice, industrial machines, clapping, motor 

sounds and nature sounds. 

4.1.6 Computational Efficiency 

Figure 53, Figure 54 and Figure 55 respectively show the generation times (on a 1.6GHz processor) for the 

wavelet approach, self-similarity approach and natural grain approach. The goal is to synthesize output 

soundtracks of increasing lengths for 12 second, 48 second and 96 second of 44Khz input sounds. 

For the grain-based approaches, the analysis phase corresponds to the time taken to segment the sound into 

grains and calculating the transition probabilities. For the wavelet approach, this is the time to build the 

source wavelet tree. The natural-grain approach is the fastest since only neighbouring frame distances are 

extracted. This performance is closely followed by the wavelet approach. The self-similarity based approach 

is noticeably slower to segment the sounds (even on small sounds) since extracting the self-similarity matrix 

is O(n2) where n is the number of audio frames. This can be done in an off-line batch manner if necessary. 

The generation phase corresponds to the time taken to synthesize the new sound once the analysis phase is 

completed. The wavelet approach is the fastest, only taking a fraction of the final duration of the 

synthesized soundtrack. Both grain-based approaches have similar, slower performance, taking slightly less 

time than the duration of the synthesized soundtrack. In all approaches, the impact of the number of 

constraints was minimal. The examples here use three synthesis constraints each with three separate sources 

and two target segments. When increased to 13 constraints, a 10% decrease in synthesis performance was 

encountered. 

A change in the segmentation threshold for the grain-based approach only necessitates a recalculation of the 

grain transition probabilities. Although the operation is O(n2), where n is the number of grains, the costs are 

insignificant for a few dozen grains such as in our example. However, for longer soundtracks (i.e. over 10 

minutes) with thousands of grains, this would be more costly. The transitions cannot be efficiently pre-

calculated since the grains are not known until the segmentation threshold is given. 



 

 

Figure 53: Wavelet-based synthesis generation times. (Left) 12 second input sound. (Middle) 48 second input sound. (Right) 96 
second input sound. 

 
 
 

 

Figure 54: Self-Similarity-based synthesis generation times. (Left) 12 second input sound. (Middle) 48 second input sound. 
(Right) 96 second input sound.  

 
 
 

 

Figure 55: Natural grain based synthesis generation times. (Left) 12 second input sound. (Middle) 48 second input sound. 
(Right) 96 second input sound. 



 

 
 

4.1.7 Interaction Mode Examples 

 
• Manual Control 

 
 
An example of soundtrack creation for video is given in the System Overview video. Using the manual control 

interface, a battle soundtrack is retargeted from its original video sequence to a new edited sequence. The 

creation process is depicted and only takes a few simple manipulations. In the Machine 2 example, the 

clicking and popping sounds contained in the original soundtrack are completely remove in the synthesized 

one using hard exclusion constraints. The rest of the examples show an assortment of different manual 

constraint combinations to achieve very different effects. 

• Semi-Automatic Control 
 
Semi-automatic control is used to produce the soundtrack of a flying bird animation in the System Overview 

video. All flight patterns similar to the user-selected ones are assigned to the same target sounds, whilst the 

rest of the soundtrack conveys the jungle background sounds. The Ballet Walk example shows semi-

automatic control over a motion capture sequence so that the sound associated to the right-leg stepping 

motion is assigned to all other similar instances in the rest of the sequence. Our high-dimensional mocap 

matching techniques were used to find the matches. 

• Fully-Automated Control 
 
The Car example takes advantage of the fully automated approach to generate new racing car sounds to 

accompany the edited version of the original racing car animation (see Figure 56). We do not have to limit 

ourselves to a single motion constraining the synthesis of a single soundtrack. As this example shows, we 

can combine multiple soundtracks from multiple objects at once. Two examples are given demonstrating 

the automatic generation of soundtracks synchronized to a mocap shooting sequence and a standing-up 

sequence in respectively, the Cowboy and Standing-up examples. In the Cowboy example, the RMS volume is 

used to automatically give more importance to the louder shooting sounds in the synthesis, since keeping 

the synchronicity between the shooting sound and its associate motion yields better results. 



 

                
 

Figure 56: Fully-automated Sound Synthesis. Given a source animation of a car and its associated motor soundtrack (Left), an 
unseen target car animation of the same nature (Right) is analyzed to synthesize a new motor soundtrack automatically, with a high 
probability of having appropriate sounds for similar motion events. 

 
• Sound transfer 

 
Our sound transfer technique is used to rebuild a motor-boat soundtrack from jeep engine sounds in the 

Boat 1 example. The RMS volume is used as the matching feature. In the Jeep example, voice drives the 

synthesis. A voice recording of the user imitating the type of jeep engine sounds targeted at any given point 

in the new soundtrack is made. The recording is used as the constraining soundtrack in the synthesis. This is 

a rapid way of generating controlled sound textures using a convenient interface. Less straightforward 

mapping is also possible such as replacing the jeep engine sounds by dog growling sounds in the Dog 

example, or replacing bird sounds with jeep engine sounds. 

4.1.8 Conclusion 

Sound textures are a relatively new area of research compared to the maturing field of image texture 

synthesis. Still, after over ten years of research, there has yet to be a single definitive algorithm for 

synthesizing new images. Each model has drawbacks and limited applicability. The same is true for sound 

texture synthesis.  The wavelet model’s performance in terms of audio quality is on the whole inferior to the 

grain-based approaches, but it is the fastest. However, out of our two grain-based models, our examples 

show that there is no clear-cut winner. It is difficult to quantify which approach is the best since each model 

generates slightly different output for each synthesis run. As also noted in [van den Doel 2001], there are no 

objective perceptual measures to help evaluate and compare the quality of our results. Additionally, output 

quality is heavily dependent on the source sound, the targeted constraints, the selected thresholds and the 

utilized model. Since the constraint specification phase is the same for all three approaches, users can 

generate multiple candidate soundtracks from all three models with the same constraints. The best result is 

then selected. 



 

5. Chapter 5 

C O N C L U S I O N  
 
 



 

5.1 Summary of Achievements 

This work set out to simplify the production of sound for computer animation and related areas. Although 

only a subset of the overall issues involved in production are addressed in this work, the suggested 

automation techniques are nonetheless valuable as shown in our discussions.  

5.1.1 Contributions to Sound Production 

The primary contribution of our sound editing work is the introduction of the concept of controllable 

sound synthesis-by-example. The proposed methods address an important, yet untouched issue in audio 

effects engineering for film, television, games, animation and VR. There are therefore no techniques to 

which it can be directly compared. The methods allow the creation of sound generation models which are 

learnt from source examples, circumventing the difficulty of creating proper physical or phenomenological 

models of sound generation. These techniques do not apply to all types of sounds, such as speech or music, 

and are better suited to model sound textures such as background sounds and sound effects.  

The other major contribution consists of the different ways of setting the constraints for soundtrack 

generation. Contributions from regions of the source signal can be set either manually, or by semi-

automatically segmenting source and target animation and using motion matching algorithms to make 

source-to-target correspondences. We describe a novel operation of associating sounds with motion 

parameters of an animation by example. Finally, sound transfer (i.e. audio-driven sound synthesis) opens up 

a completely new way of defining and creating sound. The goal was to make our methods simple enough to 

be used in consumer-level software and powerful enough to be used by audio professionals. 

Most of these contributions have already been published; the publications cover the wavelet approach 

[Cardle et al. 2003a], the natural grain approach [Cardle et al. 2003c] and the self-similarity approach [Cardle 

et al. 2003b].   

 

 



 

5.2 Future Work 

Sound and motion production branches into many interesting sub-problems. In this section, we identify 

possible avenues for future research extending the capabilities of our system. 

5.2.1 Sound Synthesis 

With regards to our sound synthesis work, there are still many opportunities for future work, a few of which 

we list below.  

Using Video to Direct the Sound Synthesis. The idea here is to extract features from the video and use 

these to control the synthesis. This would allow constraint definition schemes similar to the semi and fully-

automatic ones we developed for animation data. For example, motion of objects in the video could be 

extracted using computer vision-based motion tracking. These trajectories would then be used to find the 

sound correspondences from one video to another. Other features could be used to guide the matching 

such as inter-frame differences characterizing the change in video, colour palette variations, global panning 

motions, scene complexity, video segmentation and similarity measures [Foote et al. 2002].  

Motion and Video Synthesis Integration. Our system could be combined with recent motion capture and 

video synthesis methods, such as presented in [Akira and Forsyth 2002] and [Schödl et al. 2000], to 

synthesize motions or video sequences with meaningful soundtracks. There is currently no work in multi-

modal approaches to synthesizing both visuals and sound in parallel. Given an example animation or video 

and its associated soundtrack, we synthesize a new visual sequence along with the appropriate sounds. 

Sound Morphing. Currently our algorithm deals with overlapping constraint regions by giving the source 

sound with the highest associated weighting a higher probability of being chosen. Hence, we hear one sound 

or the other but not both at the same time. Perhaps the sound morphing techniques described in [Fitz et al. 

2002] could be used to construct an intermediate sound from each sound's weightings. More simply, we 

perform a mix with the percentage of both sounds being proportional to the weighting of each region. 



 

Audio Filtering.  In this work, we try to preserve the qualities of the original audio as much as possible. 

However, it is possible to generate more varied sound textures by applying audio filters such as time scaling, 

amplitude setting and pitch shifting as in [Lu et al. 2002; Miner and Caudell 1997]. These could be randomly 

controlled by the synthesis and smoothly introduced to ensure continuity. 

Extending Recent Sound Texture Models. It would be interesting to extend the recent work in sound 

texture synthesis [Athineos and Ellis 2003; Lu et al. 2003; Recht and Whitman 2003; Schwarz 2003; Parker 

and Chan 2003] to support our presented synthesis control. Experimentation would reveal whether such 

approaches can produce better quality results, or work on a larger variety of input sounds. 

Quasi-silent Segment Removal. Identifying quasi-silent portions [Tadamura and Nakamae 1998] in the 

source and giving them lower priority during constrained synthesis would improve constraints satisfaction 

and therefore control. 
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A P P E N D I X  B   

G R A N U L A R  S Y N T H E S I S  
 
 
Sound is ordinarily expressed in terms of its wave-like properties or as changes in air pressure over time. It 

can alternatively be expressed in terms of particles or grains just as, for example, the descriptions of light 

differ between its wave and particle properties.  Dennis Gabor proposed this granular theory of sound over 

50 years ago. Gabor believed that any sound could be synthesized with the correct combination of 

numerous simple sonic grains. The French composer Iannis Xenakis is commonly cited as one of the 

pioneers of granular synthesis. The first computer-based granular synthesis system did not appear, however, 

until Curtis Roads [Roads 1988] and Barry Truax [Truax 1988] began to investigate the potential of the 

technique systematically.  

Grains of sound are short bursts of sonic energy that combine to form larger sounds. The duration of a 

grain or granule might be of the order of 1ms to 100ms. Grains not only describe existing sounds at an 

atomic level but can also be recombined to form new sounds. This is the basis of granular synthesis where 

the construction of sounds is done from a collection of very short segments of sound.  Most systems have 

used probabilities to control the production of the granules; for example, to control the waveform and the 

duration of the individual grains. Granular synthesis techniques vary, but all are built on the same particle 

description of sound in a two-stage approach [Keller and Truax 1998]. First, we establish a time-frequency 

grid of grains, then we produce the sound by placing either synthesized grains (e.g., sine waves, FM 

synthesis or filter parameters) or sampled-sound grains (from one or several sound files). 

Hoskinson and Pai [2001] and Lu et al. [2002] use more traditional lines of granular synthesis. Their analysis 

phase uses perceptual measures of sound to determine the appropriate grain segmentation. Hoskinson and 

Pai [2001] find points of least audio change, whilst Lu et al. [2002] use a measure of self-similarity to find 

troughs of the signal between events. In both cases, grain duration is relatively large, although the coarseness 

is adjustable.  

The BJ algorithm [Bar-Joseph et al. 1999] is slightly different in that a multi-resolution representation of 

grains is utilized. The swapping of these multi-resolution grains (or more specifically wavelet coefficients) 



 

ranges between very fine-grained to coarse-grained synthesis. Also, no implicit model of sound is assumed 

in the analysis phase so, in theory, a larger set of sound types should be supported. 

 



 

 


